In this paper we present a stochastic volatility model assuming that the return shock has a Skew-GED distribution. This allows a parsimonious yet flexible treatment of asymmetry and heavy tails in the conditional distribution of returns. The Skew-GED distribution nests both the GED, the Skew-normal and the normal densities as special cases so that specification tests are easily performed. Inference is conducted under a Bayesian framework using Markov Chain MonteCarlo methods for computing the posterior distributions of the parameters. More precisely, our Gibbs-MH updating scheme makes use of the Delayed Rejection Metropolis-Hastings methodology as proposed by Tierney and Mira (1999), and of Adaptive-Rejection Metropolis sampling. We apply this methodology to a data set of daily and weekly exchange rates. Our results suggest that daily returns are mostly symmetric with fat-tailed distributions while weekly returns exhibit both significant asymmetry and fat tails.

MCMC Bayesian Estimation of a Skew-GED Stochastic Volatility Model

LUBIAN, Diego;
2004

Abstract

In this paper we present a stochastic volatility model assuming that the return shock has a Skew-GED distribution. This allows a parsimonious yet flexible treatment of asymmetry and heavy tails in the conditional distribution of returns. The Skew-GED distribution nests both the GED, the Skew-normal and the normal densities as special cases so that specification tests are easily performed. Inference is conducted under a Bayesian framework using Markov Chain MonteCarlo methods for computing the posterior distributions of the parameters. More precisely, our Gibbs-MH updating scheme makes use of the Delayed Rejection Metropolis-Hastings methodology as proposed by Tierney and Mira (1999), and of Adaptive-Rejection Metropolis sampling. We apply this methodology to a data set of daily and weekly exchange rates. Our results suggest that daily returns are mostly symmetric with fat-tailed distributions while weekly returns exhibit both significant asymmetry and fat tails.
MCMC; Bayesian Methods; Skew-GED distribution; Stochastic Volatility
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11562/21526
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 22
social impact