In this paper we present a stochastic volatility model assuming that the return shock has a Skew-GED distribution. This allows a parsimonious yet flexible treatment of asymmetry and heavy tails in the conditional distribution of returns. The Skew-GED distribution nests both the GED, the Skew-normal and the normal densities as special cases so that specification tests are easily performed. Inference is conducted under a Bayesian framework using Markov Chain MonteCarlo methods for computing the posterior distributions of the parameters. More precisely, our Gibbs-MH updating scheme makes use of the Delayed Rejection Metropolis-Hastings methodology as proposed by Tierney and Mira (1999), and of Adaptive-Rejection Metropolis sampling. We apply this methodology to a data set of daily and weekly exchange rates. Our results suggest that daily returns are mostly symmetric with fat-tailed distributions while weekly returns exhibit both significant asymmetry and fat tails.
MCMC Bayesian Estimation of a Skew-GED Stochastic Volatility Model
LUBIAN, Diego;
2004-01-01
Abstract
In this paper we present a stochastic volatility model assuming that the return shock has a Skew-GED distribution. This allows a parsimonious yet flexible treatment of asymmetry and heavy tails in the conditional distribution of returns. The Skew-GED distribution nests both the GED, the Skew-normal and the normal densities as special cases so that specification tests are easily performed. Inference is conducted under a Bayesian framework using Markov Chain MonteCarlo methods for computing the posterior distributions of the parameters. More precisely, our Gibbs-MH updating scheme makes use of the Delayed Rejection Metropolis-Hastings methodology as proposed by Tierney and Mira (1999), and of Adaptive-Rejection Metropolis sampling. We apply this methodology to a data set of daily and weekly exchange rates. Our results suggest that daily returns are mostly symmetric with fat-tailed distributions while weekly returns exhibit both significant asymmetry and fat tails.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.