We consider functionals of Ginzburg-Landau type for maps defined on (n+k)-dimensional domain with values in the k-dimensional Euclidean space. In the first part of the paper we prove that these functionals converge in a suitable sense to the area functional for surfaces (more precisely, integral currents) of dimension n (Theorem 1.1). In the second part we modify this result in order to include Dirichlet boundary condition in suitable trace spaces (Theorem 5.5) and, as a corollary, we show that the rescaled energy densities and the Jacobians of minimizers converge to minimal surfaces of dimension n (Corollaries 1.2 and 5.6).

Variational convergence for functionals of Ginzburg-Landau type

BALDO, Sisto;ORLANDI, Giandomenico
2005-01-01

Abstract

We consider functionals of Ginzburg-Landau type for maps defined on (n+k)-dimensional domain with values in the k-dimensional Euclidean space. In the first part of the paper we prove that these functionals converge in a suitable sense to the area functional for surfaces (more precisely, integral currents) of dimension n (Theorem 1.1). In the second part we modify this result in order to include Dirichlet boundary condition in suitable trace spaces (Theorem 5.5) and, as a corollary, we show that the rescaled energy densities and the Jacobians of minimizers converge to minimal surfaces of dimension n (Corollaries 1.2 and 5.6).
2005
Ginzburg-Landau functionals; Gamma convergence; integral currents; minimal surfaces; Plateau's problem
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/18355
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 90
  • ???jsp.display-item.citation.isi??? 86
social impact