Some methodological aspects of the intracerebral microdialysis technique have been investigated: the existence of a pressure gradient at the level of the dialyzing membrane, the substance diffusion from the microdialysis probe and the extent of tissue damage induced by the implantation of the microdialysis probe. At the level of the dialyzing membrane a rough balance between the pressure inside the probe and the one present in the extracellular fluid compartment has been observed. The pattern of substance diffusion in the tissue showed a large variability depending on the substance used and the experimental conditions. Relevant deductions can be made by the use of labeled markers. By means of this approach, the diffusion pattern of tritiated ganglioside GM1 in the tissue around the probe could be shown to follow a biexponential pattern, suggesting a two-step process of diffusion. The degree of tissue damage induced by the microdialysis probe was assessed by analyzing the glial reaction, and was measured by means of semiquantitative immunocytochemistry of glial fibrillary acidic protein immunoreactivity. Only a limited area of neuronal damage was observed in the region surrounding the microdialysis probe. The amount of glial reaction after probe implantation was shown to be comparable with that induced by the implantation of a microinjection cannula.
Aspects of neural plasticity in the central nervous system. III. Methodological studies on the microdialysis tecnique
Ruggeri M.;
1990-01-01
Abstract
Some methodological aspects of the intracerebral microdialysis technique have been investigated: the existence of a pressure gradient at the level of the dialyzing membrane, the substance diffusion from the microdialysis probe and the extent of tissue damage induced by the implantation of the microdialysis probe. At the level of the dialyzing membrane a rough balance between the pressure inside the probe and the one present in the extracellular fluid compartment has been observed. The pattern of substance diffusion in the tissue showed a large variability depending on the substance used and the experimental conditions. Relevant deductions can be made by the use of labeled markers. By means of this approach, the diffusion pattern of tritiated ganglioside GM1 in the tissue around the probe could be shown to follow a biexponential pattern, suggesting a two-step process of diffusion. The degree of tissue damage induced by the microdialysis probe was assessed by analyzing the glial reaction, and was measured by means of semiquantitative immunocytochemistry of glial fibrillary acidic protein immunoreactivity. Only a limited area of neuronal damage was observed in the region surrounding the microdialysis probe. The amount of glial reaction after probe implantation was shown to be comparable with that induced by the implantation of a microinjection cannula.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.