Essential oil-derived compounds such as eugenol, thymol, cinnamaldehyde, and carvacrol exhibit potent antimicrobial and anti-inflammatory properties, making them promising candidates for therapeutic and industrial applications. This review examines the current evidence regarding the mechanisms of action, efficacy, and ability to disrupt quorum sensing and biofilm formation of essential oil-derived compounds against a broad spectrum of Gram-positive and Gram-negative bacteria, including multidrug-resistant (MDR) strains. The anti-inflammatory activity of these compounds is also highlighted, with emphasis on their modulation of key signaling pathways such as nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs), and their ability to downregulate pro-inflammatory cytokines. However, challenges persist, including cytotoxicity at high concentrations, chemical instability, poor water solubility, and variable pharmacokinetics. Advanced delivery systems such as nano encapsulation and synergistic formulations offer potential strategies to overcome these limitations. This review highlights both the therapeutic potential and the current limitations of these natural compounds, emphasizing the need for continued research to translate preclinical findings into clinical applications.
Lights and Shadows of Essential Oil-Derived Compounds: Antimicrobial and Anti-Inflammatory Properties of Eugenol, Thymol, Cinnamaldehyde, and Carvacrol
Benati, Marco;Lippi, Giuseppe;Gaibani, Paolo
2025-01-01
Abstract
Essential oil-derived compounds such as eugenol, thymol, cinnamaldehyde, and carvacrol exhibit potent antimicrobial and anti-inflammatory properties, making them promising candidates for therapeutic and industrial applications. This review examines the current evidence regarding the mechanisms of action, efficacy, and ability to disrupt quorum sensing and biofilm formation of essential oil-derived compounds against a broad spectrum of Gram-positive and Gram-negative bacteria, including multidrug-resistant (MDR) strains. The anti-inflammatory activity of these compounds is also highlighted, with emphasis on their modulation of key signaling pathways such as nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs), and their ability to downregulate pro-inflammatory cytokines. However, challenges persist, including cytotoxicity at high concentrations, chemical instability, poor water solubility, and variable pharmacokinetics. Advanced delivery systems such as nano encapsulation and synergistic formulations offer potential strategies to overcome these limitations. This review highlights both the therapeutic potential and the current limitations of these natural compounds, emphasizing the need for continued research to translate preclinical findings into clinical applications.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



