Background/Objectives: The rise in multidrug-resistant pathogens such as Pseudomonas aeruginosa (PA), coupled with declining antibiotic development, underscores the need for innovative therapeutic strategies. Repurposing approved drugs provides advantages of safety and rapid development. Since quorum sensing (QS) controls key virulence traits in PA, targeting this pathway represents a promising antivirulence approach. This study aimed to identify and repurpose existing drugs as QS inhibitors. Methods: An in silico docking screen of 3000 FDA-approved or clinically tested compounds was performed against the C4-HSL receptor RhlR. Seventeen candidates were tested in the laboratory strain PAO1 for lactone-dependent signaling inhibition. The most active compound, MK-8245, was further evaluated for effects on growth, cytotoxicity, lactone release, biofilm formation, pyocyanin, elastase, rhamnolipids, and swarming motility. Its activity was also assessed in 20 clinical PA isolates. Results: MK-8245 (40 µM) reduced QS-regulated gene expression by ~60% without affecting viability. In PAO1, it inhibited rhamnolipids (60%), pyocyanin (40%), elastase (25%), biofilm formation, and swarming motility (25%). MK-8245 also enhanced the efficacy of imipenem against biofilms. In clinical isolates, it consistently decreased lactone release (~60%), pyocyanin (~50%), rhamnolipids (~40%), biofilm formation (~30%), and swarming motility (~25%). Conclusions: MK-8245 emerges as a promising antivirulence candidate against P. aeruginosa. By disrupting QS signaling and impairing multiple virulence factors, it attenuates pathogenicity without bactericidal pressure. Its synergy with standard antibiotics and consistent activity in clinical isolates highlight its translational potential and warrant further preclinical evaluation.

Repurposing MK-8245 as a Quorum Sensing Inhibitor to Suppress Virulence and Potentiate Antibiotic Activity in Pseudomonas aeruginosa

Marzaro, Giovanni;
2025-01-01

Abstract

Background/Objectives: The rise in multidrug-resistant pathogens such as Pseudomonas aeruginosa (PA), coupled with declining antibiotic development, underscores the need for innovative therapeutic strategies. Repurposing approved drugs provides advantages of safety and rapid development. Since quorum sensing (QS) controls key virulence traits in PA, targeting this pathway represents a promising antivirulence approach. This study aimed to identify and repurpose existing drugs as QS inhibitors. Methods: An in silico docking screen of 3000 FDA-approved or clinically tested compounds was performed against the C4-HSL receptor RhlR. Seventeen candidates were tested in the laboratory strain PAO1 for lactone-dependent signaling inhibition. The most active compound, MK-8245, was further evaluated for effects on growth, cytotoxicity, lactone release, biofilm formation, pyocyanin, elastase, rhamnolipids, and swarming motility. Its activity was also assessed in 20 clinical PA isolates. Results: MK-8245 (40 µM) reduced QS-regulated gene expression by ~60% without affecting viability. In PAO1, it inhibited rhamnolipids (60%), pyocyanin (40%), elastase (25%), biofilm formation, and swarming motility (25%). MK-8245 also enhanced the efficacy of imipenem against biofilms. In clinical isolates, it consistently decreased lactone release (~60%), pyocyanin (~50%), rhamnolipids (~40%), biofilm formation (~30%), and swarming motility (~25%). Conclusions: MK-8245 emerges as a promising antivirulence candidate against P. aeruginosa. By disrupting QS signaling and impairing multiple virulence factors, it attenuates pathogenicity without bactericidal pressure. Its synergy with standard antibiotics and consistent activity in clinical isolates highlight its translational potential and warrant further preclinical evaluation.
2025
biofilm, antibiotic resistance, quorum sensing
File in questo prodotto:
File Dimensione Formato  
antibiotics-14-01116 (1).pdf

accesso aperto

Licenza: Dominio pubblico
Dimensione 2.64 MB
Formato Adobe PDF
2.64 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1174867
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact