Oxaliplatin is commonly known as a successful chemotherapy for advanced colorectal cancer, improving patient survival and eradicating micro-metastases, but its use in early stages remains controversial. Mitochondria fuel energy-intensive programs such as cell migration, yet how oxaliplatin regulates the mitochondrial network in CRC - and how TP53 context shapes this - remains unclear. We investigated a matched pair of CRC cell lines from the same patient - SW480 (primary) and SW620 (lymph-node metastasis) - both harboring TP53-R273H mutation, to define differential responses in mitochondrial biogenesis, dynamics and respiration and the mechanisms underlying them. The results indicate that primary-derived colorectal cancer cell line increased cell migration, mitochondrial biogenesis, and mitochondrial respiration capacity in response to oxaliplatin through a new and firstly described gain-of-function (GOF) of p53-R273H. Additionally, in the primary-derived CRC line, oxaliplatin elicited fate heterogeneity - coexisting apoptotic and senescent fractions alongside an R273H-driven, bioenergetically primed migratory subpopulation - together with increased mitochondrial biogenesis and respiratory capacity; by contrast, the metastatic-derived line was more sensitive and displayed structural mitochondrial injury with reduced maximal respiration. More broadly, this work underscores the importance of p53 gain-of-function mutations in CRC: the same GOF (TP53-R273H) amplifies cell migration by coupling an enhanced mitochondrial biogenesis/OXPHOS program to motility. Oxaliplatin further accentuates this energetically primed, pre-metastatic state, arguing for mitochondrial-targeted combination strategies in early-stage CRC.

Hotspot mutant p53-R273H enhances mitochondrial biogenesis and cell migration in primary colorectal cancer in response to oxaliplatin

Fiore, Alessandra;Donadelli, Massimo;
2026-01-01

Abstract

Oxaliplatin is commonly known as a successful chemotherapy for advanced colorectal cancer, improving patient survival and eradicating micro-metastases, but its use in early stages remains controversial. Mitochondria fuel energy-intensive programs such as cell migration, yet how oxaliplatin regulates the mitochondrial network in CRC - and how TP53 context shapes this - remains unclear. We investigated a matched pair of CRC cell lines from the same patient - SW480 (primary) and SW620 (lymph-node metastasis) - both harboring TP53-R273H mutation, to define differential responses in mitochondrial biogenesis, dynamics and respiration and the mechanisms underlying them. The results indicate that primary-derived colorectal cancer cell line increased cell migration, mitochondrial biogenesis, and mitochondrial respiration capacity in response to oxaliplatin through a new and firstly described gain-of-function (GOF) of p53-R273H. Additionally, in the primary-derived CRC line, oxaliplatin elicited fate heterogeneity - coexisting apoptotic and senescent fractions alongside an R273H-driven, bioenergetically primed migratory subpopulation - together with increased mitochondrial biogenesis and respiratory capacity; by contrast, the metastatic-derived line was more sensitive and displayed structural mitochondrial injury with reduced maximal respiration. More broadly, this work underscores the importance of p53 gain-of-function mutations in CRC: the same GOF (TP53-R273H) amplifies cell migration by coupling an enhanced mitochondrial biogenesis/OXPHOS program to motility. Oxaliplatin further accentuates this energetically primed, pre-metastatic state, arguing for mitochondrial-targeted combination strategies in early-stage CRC.
2026
Cell migration
Colorectal cancer
Metabolic shift
Oxaliplatin
p53-R273H
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0167488925001788-main.pdf

accesso aperto

Descrizione: CC BY 4.0 publisher version
Tipologia: Versione dell'editore
Licenza: Creative commons
Dimensione 13.43 MB
Formato Adobe PDF
13.43 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1174490
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact