Oxidative stress plays a critical role in the development of various chronic diseases, leading to major health problems worldwide. There has been increasing interest in using natural antioxidants as complementary agents for maintaining redox homeostasis and assuring a healthy lifestyle. This study aimed to systematically screen the antioxidant potential and cytotoxicity profiles of 19 plant-derived extracts using both a cell-free Fenton reaction-based assay and human monocytic THP-1 cells in vitro. The radical-scavenging capacity varied markedly among the extracts, with Acalypha virginica Linnaeus (ACALYPHA), Acorus calamus Linnaeus (ACORUS), Actinidia deliciosa (A.Chev.) C.F. Liang & A.R. Ferguson (ACTINIDIA), and Heuchera sanguinea Pursh (HEUCHERA) demonstrating strong activity in the chemical assay. In the cellular model, 15 extracts significantly reduced intracellular reactive oxygen species (ROS) levels without inducing cytotoxicity at effective concentrations. Notably, Acalypha virginica Linnaeus (ACALYPHA), Actinidia deliciosa (A.Chev.) C.F. Liang & A.R. Ferguson (ACTINIDIA), Dianthus superbus Linnaeus subsp. superbus (DIANTHUS), Succisa pratensis Moench (SUCCISA), and Typha laxmannii Lepech (TYPHA) exhibited consistent antioxidant efficacy across multiple doses. At higher concentrations, all extracts triggered apoptosis and/or necrosis, emphasizing the importance of defining safe ranges. These findings provide a comprehensive comparative analysis of Mediterranean plant-based natural antioxidants obtained by an in vitro approach. The selected plant extracts could be considered as promising candidates for the development of strategies targeting oxidative stress-related disorders. Further investigations considering the specific phytochemical composition of each extract and in vivo validation are needed to confirm their efficacy and safety.

Screening of Mediterranean Plant-Derived Extracts for Antioxidant Effect in Cell-Free and Human Cell Line Models

Argentino, Giuseppe;Di Leo, Edoardo Giuseppe;Stranieri, Chiara;Negri, Stefano;Commisso, Mauro;Guzzo, Flavia;Fratta Pasini, Anna Maria;Castagna, Annalisa;Friso, Simonetta
2025-01-01

Abstract

Oxidative stress plays a critical role in the development of various chronic diseases, leading to major health problems worldwide. There has been increasing interest in using natural antioxidants as complementary agents for maintaining redox homeostasis and assuring a healthy lifestyle. This study aimed to systematically screen the antioxidant potential and cytotoxicity profiles of 19 plant-derived extracts using both a cell-free Fenton reaction-based assay and human monocytic THP-1 cells in vitro. The radical-scavenging capacity varied markedly among the extracts, with Acalypha virginica Linnaeus (ACALYPHA), Acorus calamus Linnaeus (ACORUS), Actinidia deliciosa (A.Chev.) C.F. Liang & A.R. Ferguson (ACTINIDIA), and Heuchera sanguinea Pursh (HEUCHERA) demonstrating strong activity in the chemical assay. In the cellular model, 15 extracts significantly reduced intracellular reactive oxygen species (ROS) levels without inducing cytotoxicity at effective concentrations. Notably, Acalypha virginica Linnaeus (ACALYPHA), Actinidia deliciosa (A.Chev.) C.F. Liang & A.R. Ferguson (ACTINIDIA), Dianthus superbus Linnaeus subsp. superbus (DIANTHUS), Succisa pratensis Moench (SUCCISA), and Typha laxmannii Lepech (TYPHA) exhibited consistent antioxidant efficacy across multiple doses. At higher concentrations, all extracts triggered apoptosis and/or necrosis, emphasizing the importance of defining safe ranges. These findings provide a comprehensive comparative analysis of Mediterranean plant-based natural antioxidants obtained by an in vitro approach. The selected plant extracts could be considered as promising candidates for the development of strategies targeting oxidative stress-related disorders. Further investigations considering the specific phytochemical composition of each extract and in vivo validation are needed to confirm their efficacy and safety.
2025
plant extracts, natural antioxidants, Mediterranean flora, oxidative stress, reactive oxygen species, cytotoxicity, redox homeostasis, THP1 cells, human primary cell models, oxidative stress related disorders
File in questo prodotto:
File Dimensione Formato  
antioxidants-14-01217-v2.pdf

accesso aperto

Licenza: Accesso ristretto
Dimensione 2.16 MB
Formato Adobe PDF
2.16 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1172367
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact