: In this perspective article, we introduce Ecocebo as a novel concept describing the modulatory effects of physical environments, whether natural or built, on drug effect. Positioned as a spatial component of the placebo effect, Ecocebo is grounded in evidence-based design principles and proposes that environmental features such as natural light, greenery, spatial geometry, and calming esthetics can significantly influence sensory, emotional, and cognitive processes. These environmental factors may enhance or modify pharmacological responses, especially for analgesics, anxiolytics, and antidepressants. We highlighted how exposure to restorative spaces can reduce pain perception, stress, and the need for medication, paralleling findings in placebo research where contextual and sensory cues influence brain regions linked to emotion and pain regulation. We propose virtual reality (VR) as the most suitable methodological tool to study Ecocebo in controlled and ecologically valid settings. VR allows for the precise manipulation of spatial features and real-time monitoring of physiological and psychological responses. We also propose integrating VR with neuromodulation techniques to investigate brain-environment-drug interactions. Finally, we addressed key methodological challenges such as defining control conditions and standardizing the measurement of presence. This perspective opens new directions for the integration of non-pharmacological and pharmacological interventions and personalized therapeutic environments to optimize clinical outcomes.
The Interplay Between Environment and Drug Effects: Decoding the Ecocebo Phenomenon with Virtual Technologies
Chiamulera, Cristiano
2025-01-01
Abstract
: In this perspective article, we introduce Ecocebo as a novel concept describing the modulatory effects of physical environments, whether natural or built, on drug effect. Positioned as a spatial component of the placebo effect, Ecocebo is grounded in evidence-based design principles and proposes that environmental features such as natural light, greenery, spatial geometry, and calming esthetics can significantly influence sensory, emotional, and cognitive processes. These environmental factors may enhance or modify pharmacological responses, especially for analgesics, anxiolytics, and antidepressants. We highlighted how exposure to restorative spaces can reduce pain perception, stress, and the need for medication, paralleling findings in placebo research where contextual and sensory cues influence brain regions linked to emotion and pain regulation. We propose virtual reality (VR) as the most suitable methodological tool to study Ecocebo in controlled and ecologically valid settings. VR allows for the precise manipulation of spatial features and real-time monitoring of physiological and psychological responses. We also propose integrating VR with neuromodulation techniques to investigate brain-environment-drug interactions. Finally, we addressed key methodological challenges such as defining control conditions and standardizing the measurement of presence. This perspective opens new directions for the integration of non-pharmacological and pharmacological interventions and personalized therapeutic environments to optimize clinical outcomes.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



