Photosystem II (PSII) is the pigment-protein complex catalysing light-induced water oxidation. In Arabidopsis thaliana, it includes three Lhcb4-6 proteins linking the core complex to peripheral trimeric antennae. While Lhcb5 and Lhcb6 are encoded by single genes, Lhcb4 is encoded by three isoforms: Lhcb4.1 and Lhcb4.2, constitutively expressed, and Lhcb4.3 (Lhcb8), which accumulates under prolonged abiotic stress. Lhcb8 substitutes for Lhcb4, preventing Lhcb6 accumulation and resulting in a smaller PSII with high quantum yield. Cryo-electron microscopy reveals that Lhcb8 has a shorter carboxy-terminal domain, lacks two chlorophylls, and interacts more tightly with the PSII core, inducing structural changes in the PSII antenna system, ultimately inhibiting the formation of PSII arrays and favouring plastoquinone diffusion. We suggest that dynamic Lhcb4 vs Lhcb8 expression allows for PSII acclimation to contrasting light conditions, offering the potential for engineering crops with improved light use efficiency.

A stress-induced paralog of Lhcb4 controls the photosystem II functional architecture in Arabidopsis thaliana

Caferri, Roberto
Membro del Collaboration Group
;
Dall'Osto, Luca
Membro del Collaboration Group
;
Amelii, Antonello
Investigation
;
Bassi, Roberto
Supervision
2025-01-01

Abstract

Photosystem II (PSII) is the pigment-protein complex catalysing light-induced water oxidation. In Arabidopsis thaliana, it includes three Lhcb4-6 proteins linking the core complex to peripheral trimeric antennae. While Lhcb5 and Lhcb6 are encoded by single genes, Lhcb4 is encoded by three isoforms: Lhcb4.1 and Lhcb4.2, constitutively expressed, and Lhcb4.3 (Lhcb8), which accumulates under prolonged abiotic stress. Lhcb8 substitutes for Lhcb4, preventing Lhcb6 accumulation and resulting in a smaller PSII with high quantum yield. Cryo-electron microscopy reveals that Lhcb8 has a shorter carboxy-terminal domain, lacks two chlorophylls, and interacts more tightly with the PSII core, inducing structural changes in the PSII antenna system, ultimately inhibiting the formation of PSII arrays and favouring plastoquinone diffusion. We suggest that dynamic Lhcb4 vs Lhcb8 expression allows for PSII acclimation to contrasting light conditions, offering the potential for engineering crops with improved light use efficiency.
2025
Photosystem II, light-harvesting, photoacclimation, stress-induced antennae, cryo-EM
File in questo prodotto:
File Dimensione Formato  
Caferri Stress-induced paralog Lhcb8 NatureComm2025.pdf

accesso aperto

Tipologia: Versione dell'editore
Licenza: Copyright dell'editore
Dimensione 4.49 MB
Formato Adobe PDF
4.49 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1170132
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact