For generic r = (r1, aEuro broken vertical bar , rn) a the space a"(3)(r) of n-gons in a"e(3) with edges of lengths r is a smooth, symplectic manifold. We investigate its Gromov width and prove that the expression 2 pi min {2r (j) , (a (i not equal j) r (i) ) - r (i) |j = 1, aEuro broken vertical bar , n} is the Gromov width of all (smooth) 5-gon spaces and of 6-gon spaces, under some condition on r a . The same formula constitutes a lower bound for all (smooth) spaces of 6-gons. Moreover, we prove that the Gromov width of a"(3)(r) is given by the above expression when a"(3)(r) is symplectomorphic to a",a"(TM) (n - 3), for any n ae 4.
ON THE GROMOV WIDTH OF POLYGON SPACES
Mandini, A.;
2018-01-01
Abstract
For generic r = (r1, aEuro broken vertical bar , rn) a the space a"(3)(r) of n-gons in a"e(3) with edges of lengths r is a smooth, symplectic manifold. We investigate its Gromov width and prove that the expression 2 pi min {2r (j) , (a (i not equal j) r (i) ) - r (i) |j = 1, aEuro broken vertical bar , n} is the Gromov width of all (smooth) 5-gon spaces and of 6-gon spaces, under some condition on r a . The same formula constitutes a lower bound for all (smooth) spaces of 6-gons. Moreover, we prove that the Gromov width of a"(3)(r) is given by the above expression when a"(3)(r) is symplectomorphic to a",a"(TM) (n - 3), for any n ae 4.| File | Dimensione | Formato | |
|---|---|---|---|
|
[1] A.Mandini, M. Pabiniak, On the Gromov width of polygon spaces, March 2018, Volume 23, Issue 1, pp 149–183 .pdf
non disponibili
Licenza:
Copyright dell'editore
Dimensione
412.04 kB
Formato
Adobe PDF
|
412.04 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



