We show that the spectrum of the Dirichlet problem for the Laplace operator −\Delta in the plane R^2 perforated by a double-periodic family of holes contains any a priori number of gaps, for sufficiently large holes.While this result was already known in the case of circular holes, we consider here a more general geometric setting with holes of the shape {|x1|μ + |x2|μ ≤ r }, 1 < μ < ∞.

Singular perturbation Dirichlet problem in a double-periodic perforated plane

Ferraresso, F.;
2015-01-01

Abstract

We show that the spectrum of the Dirichlet problem for the Laplace operator −\Delta in the plane R^2 perforated by a double-periodic family of holes contains any a priori number of gaps, for sufficiently large holes.While this result was already known in the case of circular holes, we consider here a more general geometric setting with holes of the shape {|x1|μ + |x2|μ ≤ r }, 1 < μ < ∞.
2015
Laplace–Dirichlet problem, Spectrum, Spectral gap, Periodic domain, Cuspidal domain
File in questo prodotto:
File Dimensione Formato  
Ferraresso-Taskinen2015_Article_SingularPerturbationDirichletP.pdf

solo utenti autorizzati

Tipologia: Documento in Post-print
Licenza: Copyright dell'editore
Dimensione 429.58 kB
Formato Adobe PDF
429.58 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1169078
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? ND
social impact