Let omega$\Omega$ be a bounded domain in R2$\mathbb {R}<^>2$ with smooth boundary partial differential omega$\partial \Omega$, and let omega h$\omega _h$ be the set of points in omega$\Omega$ whose distance from the boundary is smaller than h$h$. We prove that the eigenvalues of the biharmonic operator on omega h$\omega _h$ with Neumann boundary conditions converge to the eigenvalues of a limiting problem in the form of a system of differential equations on partial differential omega$\partial \Omega$.
On the eigenvalues of the biharmonic operator with Neumann boundary conditions on a thin set
Francesco Ferraresso;
2023-01-01
Abstract
Let omega$\Omega$ be a bounded domain in R2$\mathbb {R}<^>2$ with smooth boundary partial differential omega$\partial \Omega$, and let omega h$\omega _h$ be the set of points in omega$\Omega$ whose distance from the boundary is smaller than h$h$. We prove that the eigenvalues of the biharmonic operator on omega h$\omega _h$ with Neumann boundary conditions converge to the eigenvalues of a limiting problem in the form of a system of differential equations on partial differential omega$\partial \Omega$.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Bulletin of London Math Soc - 2023 - Ferraresso - On the eigenvalues of the biharmonic operator with Neumann boundary.pdf
solo utenti autorizzati
Tipologia:
Documento in Post-print
Licenza:
Copyright dell'editore
Dimensione
443.35 kB
Formato
Adobe PDF
|
443.35 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.