Let omega$\Omega$ be a bounded domain in R2$\mathbb {R}<^>2$ with smooth boundary partial differential omega$\partial \Omega$, and let omega h$\omega _h$ be the set of points in omega$\Omega$ whose distance from the boundary is smaller than h$h$. We prove that the eigenvalues of the biharmonic operator on omega h$\omega _h$ with Neumann boundary conditions converge to the eigenvalues of a limiting problem in the form of a system of differential equations on partial differential omega$\partial \Omega$.

On the eigenvalues of the biharmonic operator with Neumann boundary conditions on a thin set

Francesco Ferraresso;
2023-01-01

Abstract

Let omega$\Omega$ be a bounded domain in R2$\mathbb {R}<^>2$ with smooth boundary partial differential omega$\partial \Omega$, and let omega h$\omega _h$ be the set of points in omega$\Omega$ whose distance from the boundary is smaller than h$h$. We prove that the eigenvalues of the biharmonic operator on omega h$\omega _h$ with Neumann boundary conditions converge to the eigenvalues of a limiting problem in the form of a system of differential equations on partial differential omega$\partial \Omega$.
2023
Biharmonic operator, thin domain, eigenvalues
File in questo prodotto:
File Dimensione Formato  
Bulletin of London Math Soc - 2023 - Ferraresso - On the eigenvalues of the biharmonic operator with Neumann boundary.pdf

solo utenti autorizzati

Tipologia: Documento in Post-print
Licenza: Copyright dell'editore
Dimensione 443.35 kB
Formato Adobe PDF
443.35 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1169068
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact