It has been shown that P-glycoprotein (P-gp) can greatly affect the cell uptake of antiretroviral drugs, thus hampering their access to HIV-1 replication sites. Lymphocytes are important sites of replication of HIV and target of other drugs, modification on these cells of P-gp could have an effect on pharmacokinetic of antiretrovirals and drug substrates. Blood samples from 16 healthy volunteers were used to determine the expression of P-gp on total, land T helper lymphocytes after exposure to darunavir, a second generation protease inhibitor, and raltegravir, the first approved integrase inhibitor. Moreover, the effect of the drugs on P-gp functional activity was also studied by the rhodamine-123 efflux test. Darunavir, but not raltegravir, exposure caused a moderate, dose-dependent increment in P-gp expression in total, T and T helper lymphocytes, as demonstrated by the relative frequency of P-gp + cells and by the amount of P-gp molecules present on cell surface. Functionally, incubation with darunavir led to a marked inhibition of P-gp activity measured by the efflux of rhodamine-123 similar to that observed by verapamil, a specific P-gp inhibitor. Raltegravir was not able to modify the efflux of rhodamine-123 level. Data show that darunavir, unlike raltegravir, may modify the expression and functionality of P-gp on human lymphocytes, thus leading to potential changes in intracellular concentrations of darunavir in patients treated with other drugs substrate of P-gp and vice versa. Our study highlights the need for studies on drug interactions via the P-gp modulation mechanism, especially with the current multi-drug regimens. (C) 2013 Elsevier B.V. All rights reserved.

Determination of P-glycoprotein surface expression and functional ability after in vitro treatment with darunavir or raltegravir in lymphocytes of healthy donors

Gentilotti, Elisa;
2013-01-01

Abstract

It has been shown that P-glycoprotein (P-gp) can greatly affect the cell uptake of antiretroviral drugs, thus hampering their access to HIV-1 replication sites. Lymphocytes are important sites of replication of HIV and target of other drugs, modification on these cells of P-gp could have an effect on pharmacokinetic of antiretrovirals and drug substrates. Blood samples from 16 healthy volunteers were used to determine the expression of P-gp on total, land T helper lymphocytes after exposure to darunavir, a second generation protease inhibitor, and raltegravir, the first approved integrase inhibitor. Moreover, the effect of the drugs on P-gp functional activity was also studied by the rhodamine-123 efflux test. Darunavir, but not raltegravir, exposure caused a moderate, dose-dependent increment in P-gp expression in total, T and T helper lymphocytes, as demonstrated by the relative frequency of P-gp + cells and by the amount of P-gp molecules present on cell surface. Functionally, incubation with darunavir led to a marked inhibition of P-gp activity measured by the efflux of rhodamine-123 similar to that observed by verapamil, a specific P-gp inhibitor. Raltegravir was not able to modify the efflux of rhodamine-123 level. Data show that darunavir, unlike raltegravir, may modify the expression and functionality of P-gp on human lymphocytes, thus leading to potential changes in intracellular concentrations of darunavir in patients treated with other drugs substrate of P-gp and vice versa. Our study highlights the need for studies on drug interactions via the P-gp modulation mechanism, especially with the current multi-drug regimens. (C) 2013 Elsevier B.V. All rights reserved.
2013
Darunavir; Drug interaction; HIV; Lymphocyte; P-glycoprotein; Raltegravir
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1168640
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 13
social impact