Voice activity detection (VAD) is the process of automatically determining whether a person is speaking and identifying the timing of their speech in an audiovisual data. Traditionally, this task has been tackled by processing either audio signals or visual data, or by combining both modalities through fusion or joint learning. In our study, drawing inspiration from recent advancements in visual-language models, we introduce a novel approach leveraging Contrastive Language-Image Pretraining (CLIP) models. The CLIP visual encoder analyzes video segments focusing on the upper body of an individual, while the text encoder processes textual descriptions generated by a Generative Large Multimodal Model, i.e., the Large Language and Vision Assistant (LLaVA). Subsequently, embeddings from these encoders are fused through a deep neural network to perform VAD. Our experimental analysis across three VAD benchmarks showcases the superior performance of our method compared to existing visual VAD approaches. Notably, our approach outperforms several audio-visual methods despite its simplicity and without requiring pretraining on extensive audio-visual datasets.

VAD-CLVA: Integrating CLIP with LLaVA for Voice Activity Detection

Cigdem Beyan
2025-01-01

Abstract

Voice activity detection (VAD) is the process of automatically determining whether a person is speaking and identifying the timing of their speech in an audiovisual data. Traditionally, this task has been tackled by processing either audio signals or visual data, or by combining both modalities through fusion or joint learning. In our study, drawing inspiration from recent advancements in visual-language models, we introduce a novel approach leveraging Contrastive Language-Image Pretraining (CLIP) models. The CLIP visual encoder analyzes video segments focusing on the upper body of an individual, while the text encoder processes textual descriptions generated by a Generative Large Multimodal Model, i.e., the Large Language and Vision Assistant (LLaVA). Subsequently, embeddings from these encoders are fused through a deep neural network to perform VAD. Our experimental analysis across three VAD benchmarks showcases the superior performance of our method compared to existing visual VAD approaches. Notably, our approach outperforms several audio-visual methods despite its simplicity and without requiring pretraining on extensive audio-visual datasets.
2025
active speaker
voice activity detection
social interactions
vision language models
generative multimodal models
panel discussions
File in questo prodotto:
File Dimensione Formato  
IJ23_VADCLVA Integrating CLIP with LLaVA for Voice.pdf

accesso aperto

Tipologia: Versione dell'editore
Licenza: Creative commons
Dimensione 20.41 MB
Formato Adobe PDF
20.41 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1161480
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact