We investigate the contribution of isometric rate of torque development (RTD) and maximal voluntary torque (MVT) to the dynamic force production capacities of knee extensors obtained from the torque-velocity (TV) relationship, that is, the theoretical maximal velocity (V0), torque (T0), and maximal power (Pmax). Single-leg knee extensors were tested in 64 young adults (31 females). RTD and root mean square (RMS) of electromyographic signals from the knee extensors were recorded during isometric and incremental load dynamic (nonisokinetic) contractions. In the dynamic test, torque and velocity were continuously measured and averaged over 80°-140° knee angles to determine individual TV relationships. TV relationships were well fitted by hyperbolic regression (r2 from 0.983 to 0.993). Stepwise linear regressions showed that the main determinant of V0 was normalized RTD50 (R2 = 0.145, p = 0.004); the main determinant of T0 was MVT (R2 = 0.760, p < 0.001); and the main determinant of Pmax was RTD150 (R2 = 0.612, p < 0.001). V0 (when obtained from averaged values over knee extension) is partially explained by rapid torque capacity (i.e., "explosive strength"). Therefore, the capacity to produce torque at high velocity partly depends on the capacity to rise quickly the torque in the early phase of the contraction, suggesting that some underlying determinants of RFD would also affect V0.
The Rate of Torque Development as a Determinant of the Torque-Velocity Relationship
Salvaggio, Francesco;Grossio, Ludovico;
2025-01-01
Abstract
We investigate the contribution of isometric rate of torque development (RTD) and maximal voluntary torque (MVT) to the dynamic force production capacities of knee extensors obtained from the torque-velocity (TV) relationship, that is, the theoretical maximal velocity (V0), torque (T0), and maximal power (Pmax). Single-leg knee extensors were tested in 64 young adults (31 females). RTD and root mean square (RMS) of electromyographic signals from the knee extensors were recorded during isometric and incremental load dynamic (nonisokinetic) contractions. In the dynamic test, torque and velocity were continuously measured and averaged over 80°-140° knee angles to determine individual TV relationships. TV relationships were well fitted by hyperbolic regression (r2 from 0.983 to 0.993). Stepwise linear regressions showed that the main determinant of V0 was normalized RTD50 (R2 = 0.145, p = 0.004); the main determinant of T0 was MVT (R2 = 0.760, p < 0.001); and the main determinant of Pmax was RTD150 (R2 = 0.612, p < 0.001). V0 (when obtained from averaged values over knee extension) is partially explained by rapid torque capacity (i.e., "explosive strength"). Therefore, the capacity to produce torque at high velocity partly depends on the capacity to rise quickly the torque in the early phase of the contraction, suggesting that some underlying determinants of RFD would also affect V0.File | Dimensione | Formato | |
---|---|---|---|
Scandinavian Med Sci Sports - 2025 - Boccia - The Rate of Torque Development as a Determinant of the Torque Velocity.pdf
accesso aperto
Descrizione: CC BY 4.0 publisher version
Tipologia:
Versione dell'editore
Licenza:
Creative commons
Dimensione
1.71 MB
Formato
Adobe PDF
|
1.71 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.