Lower atmospheric pressure affects biologically relevant physical parameters such as gas partial pressure and concentration, leading to increased water vapor diffusivity and greater soil water content loss through evapotranspiration. This might impact plant photosynthetic activity, resource allocation, water relations, and growth. However, the direct impact of low air pressure on plant physiology is largely unknown. This study examined the effects of low air pressure, alone and combined with two water inputs, on different functional traits of three plant species transplanted from montane grasslands at 1,500 m a.s.l. during the first four weeks of their early phenological stage: Trifolium pratense, Hieracium pilosella, and Brachypodium rupestre. Using the terraXcube Ecotron facility which can simulate different climatic conditions, we isolated the effect of air pressure from those of other, related environmental factors (temperature, humidity, and solar radiation) by simulating three different elevations with corresponding air pressures: 1,500 m a.s.l. (85 kPa, control scenario), 2,500 m a.s.l. (75 kPa), and 4,000 m a.s.l. (62 kPa) and we used two different water regimes to observe the combined effect of low air pressure and the impact of varying water inputs on plants. In T. pratense and H. pilosella, we observed an increase in stomatal conductance but a reduction in aboveground biomass at the lowest pressure compared to the control scenario after four weeks of incubation. Contrastingly, B. rupestre showed an interactive effect of air pressure and water treatment on chlorophyll and biomass nitrogen content, which were reduced under higher soil water conditions at 85kPa. This study serves as an initial step in isolating the specific impact of air pressure on plant physiology, demonstrating the potential of the facility for future research. The mixed response patterns across species highlight that atmospheric pressure could be a driving factor to consider when assessing plant responses along elevational gradient.

Short-term impact of low air pressure on plants’ functional traits

Dainese, Matteo
2025-01-01

Abstract

Lower atmospheric pressure affects biologically relevant physical parameters such as gas partial pressure and concentration, leading to increased water vapor diffusivity and greater soil water content loss through evapotranspiration. This might impact plant photosynthetic activity, resource allocation, water relations, and growth. However, the direct impact of low air pressure on plant physiology is largely unknown. This study examined the effects of low air pressure, alone and combined with two water inputs, on different functional traits of three plant species transplanted from montane grasslands at 1,500 m a.s.l. during the first four weeks of their early phenological stage: Trifolium pratense, Hieracium pilosella, and Brachypodium rupestre. Using the terraXcube Ecotron facility which can simulate different climatic conditions, we isolated the effect of air pressure from those of other, related environmental factors (temperature, humidity, and solar radiation) by simulating three different elevations with corresponding air pressures: 1,500 m a.s.l. (85 kPa, control scenario), 2,500 m a.s.l. (75 kPa), and 4,000 m a.s.l. (62 kPa) and we used two different water regimes to observe the combined effect of low air pressure and the impact of varying water inputs on plants. In T. pratense and H. pilosella, we observed an increase in stomatal conductance but a reduction in aboveground biomass at the lowest pressure compared to the control scenario after four weeks of incubation. Contrastingly, B. rupestre showed an interactive effect of air pressure and water treatment on chlorophyll and biomass nitrogen content, which were reduced under higher soil water conditions at 85kPa. This study serves as an initial step in isolating the specific impact of air pressure on plant physiology, demonstrating the potential of the facility for future research. The mixed response patterns across species highlight that atmospheric pressure could be a driving factor to consider when assessing plant responses along elevational gradient.
2025
air pressure
alpine species
climate change
upward shift
File in questo prodotto:
File Dimensione Formato  
journal.pone.0317590.pdf

accesso aperto

Tipologia: Versione dell'editore
Licenza: Creative commons
Dimensione 2.69 MB
Formato Adobe PDF
2.69 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1156808
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact