Human embryonic carcinoma (hEC) cells are derived from teratocarcinomas, exhibit robust proliferation, have a high differentiation potential, are the malignant counterparts of human embryonic stem cells (hESCs), and are considered hESC-like. The chromosomal passenger complex (CPC), made up of the microtuble binding protein Borealin, the kinase Aurora-B, the CPC-stabilizing inner centromere protein (INCENP), and the inhibitor of apoptosis family member Survivin, regulates cell division and is active exclusively during mitosis in somatic cells. The anaphase-promoting complex/cyclosome and its cofactor Cdh1 (APC/CCdh1) is a ubiquitylating complex that catalyzes the degradation of Aurora-B and Borealin in somatic cells but has low activity during interphase in hESCs. Here, we found that Borealin and Aurora-B exhibited sustained stability throughout the cell cycle of hEC cells due to low APC/CCdh1 activity. In contrast with somatic cells, CPC activity persisted across the cell cycle of hEC cells because of diminished APC/CCdh1 activity. Disrupting the CPC complex by depleting its constituents triggered spontaneous differentiation in hEC cells. As hEC cells differentiated, APC/CCdh1 activation curtailed CPC activity. Inactivating the CPC by pharmacologically inhibiting Aurora-B induced hEC cell differentiation by activating the epithelial-to-mesenchymal transition (EMT) program. Hence, APC/CCdh1-mediated termination of CPC activity triggered hEC cell differentiation. Collectively, these findings demonstrate a role for the CPC in governing hESC cell fate.
Sustained chromosomal passenger complex activity preserves the pluripotency of human embryonic carcinoma cells
Guardavaccaro, Daniele;
2025-01-01
Abstract
Human embryonic carcinoma (hEC) cells are derived from teratocarcinomas, exhibit robust proliferation, have a high differentiation potential, are the malignant counterparts of human embryonic stem cells (hESCs), and are considered hESC-like. The chromosomal passenger complex (CPC), made up of the microtuble binding protein Borealin, the kinase Aurora-B, the CPC-stabilizing inner centromere protein (INCENP), and the inhibitor of apoptosis family member Survivin, regulates cell division and is active exclusively during mitosis in somatic cells. The anaphase-promoting complex/cyclosome and its cofactor Cdh1 (APC/CCdh1) is a ubiquitylating complex that catalyzes the degradation of Aurora-B and Borealin in somatic cells but has low activity during interphase in hESCs. Here, we found that Borealin and Aurora-B exhibited sustained stability throughout the cell cycle of hEC cells due to low APC/CCdh1 activity. In contrast with somatic cells, CPC activity persisted across the cell cycle of hEC cells because of diminished APC/CCdh1 activity. Disrupting the CPC complex by depleting its constituents triggered spontaneous differentiation in hEC cells. As hEC cells differentiated, APC/CCdh1 activation curtailed CPC activity. Inactivating the CPC by pharmacologically inhibiting Aurora-B induced hEC cell differentiation by activating the epithelial-to-mesenchymal transition (EMT) program. Hence, APC/CCdh1-mediated termination of CPC activity triggered hEC cell differentiation. Collectively, these findings demonstrate a role for the CPC in governing hESC cell fate.File | Dimensione | Formato | |
---|---|---|---|
Tsunematsu et al.pdf
accesso aperto
Licenza:
Non specificato
Dimensione
18.89 MB
Formato
Adobe PDF
|
18.89 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.