Sophisticated Machine Learning (Ml) models have seen to increase predictive accuracy of linear regression models in the context of credit risk modelling. Nevertheless, linear regression models remain popular in the credit risk industry, because of the lack of transparency of Ml models. In this study, we propose a way to interpret, tuning and extract default probabilities from Ml technologies in the context of credit risk. Using a sample of Italian Small and Medium sized Enterprises' (Smes), we show how much and why Ml models increase predictions and precision of default probabilities.

Machine Learning e probabilità di default delle Pmi,

Alex Sclip
2025-01-01

Abstract

Sophisticated Machine Learning (Ml) models have seen to increase predictive accuracy of linear regression models in the context of credit risk modelling. Nevertheless, linear regression models remain popular in the credit risk industry, because of the lack of transparency of Ml models. In this study, we propose a way to interpret, tuning and extract default probabilities from Ml technologies in the context of credit risk. Using a sample of Italian Small and Medium sized Enterprises' (Smes), we show how much and why Ml models increase predictions and precision of default probabilities.
2025
Machine Learning, Credit Risk, Interpretability
File in questo prodotto:
File Dimensione Formato  
14_ML_BancariaForum.pdf

solo utenti autorizzati

Licenza: Copyright dell'editore
Dimensione 3.76 MB
Formato Adobe PDF
3.76 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1155928
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact