The coordinated action of transcriptional and post-transcriptional machineries shapes gene expression programs at steady state and determines their concerted response to perturbations. We have developed Nanodynamo, an experimental and computational workflow for quantifying the kinetic rates of nuclear and cytoplasmic steps of the RNA life cycle. Nanodynamo is based on mathematical modelling following sequencing of native RNA from cellular fractions and polysomes. We have applied this workflow to triple-negative breast cancer cells, revealing widespread post-transcriptional RNA processing that is mutually exclusive with its co-transcriptional counterpart. We used Nanodynamo to unravel the coupling between transcription, processing, export, decay and translation machineries. We have identified a number of coupling interactions within and between the nucleus and cytoplasm that largely contribute to coordinating how cells respond to perturbations that affect gene expression programs. Nanodynamo will be instrumental in unravelling the determinants and regulatory processes involved in the coordination of gene expression responses.The life of RNAs is governed by a series of transcriptional and post-transcriptional steps. Here, authors developed Nanodynamo, an experimental and computational workflow for studying how the coordinated action of these steps shapes breast cancer gene expression programs at the subcellular level.
Nanodynamo quantifies subcellular RNA dynamics revealing extensive coupling between steps of the RNA life cycle
Maestri, Simone;
2024-01-01
Abstract
The coordinated action of transcriptional and post-transcriptional machineries shapes gene expression programs at steady state and determines their concerted response to perturbations. We have developed Nanodynamo, an experimental and computational workflow for quantifying the kinetic rates of nuclear and cytoplasmic steps of the RNA life cycle. Nanodynamo is based on mathematical modelling following sequencing of native RNA from cellular fractions and polysomes. We have applied this workflow to triple-negative breast cancer cells, revealing widespread post-transcriptional RNA processing that is mutually exclusive with its co-transcriptional counterpart. We used Nanodynamo to unravel the coupling between transcription, processing, export, decay and translation machineries. We have identified a number of coupling interactions within and between the nucleus and cytoplasm that largely contribute to coordinating how cells respond to perturbations that affect gene expression programs. Nanodynamo will be instrumental in unravelling the determinants and regulatory processes involved in the coordination of gene expression responses.The life of RNAs is governed by a series of transcriptional and post-transcriptional steps. Here, authors developed Nanodynamo, an experimental and computational workflow for studying how the coordinated action of these steps shapes breast cancer gene expression programs at the subcellular level.File | Dimensione | Formato | |
---|---|---|---|
s41467-024-51917-2.pdf
accesso aperto
Tipologia:
Versione dell'editore
Licenza:
Creative commons
Dimensione
4.16 MB
Formato
Adobe PDF
|
4.16 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.