The Avidin-Nucleic-Acids-Nano-Assembly (ANANAS) is a kind of soft poly-avidin nanoparticle originating from the high affinity interaction between avidin and the nucleic acids. In this work we investigated the possibility of transforming ANANAS cores into stoichiometrically controlled multi-functional nanoparticles through a “one-pot” procedure, and we measured in a quantitative way their ability to work as reagents for enhanced immunodiagnostic detection. Initially, we measured the ANANAS loading capability for biotinylated proteins of different nature. About 200 molecules of biotin-horseradish-peroxidase (40KDa b-HRP) and 60 molecules of biotin-immunoglobulin-G (150KDa b-IgG) could be accommodated onto each nanoparticle, showing that steric limitations dictate the number of loadable entities. Stoichiometrically controlled functional assemblies were generated by mixing core particles with sub-saturating amounts of b-HRP and b-IgG. When applied as detection reagents in an Enzyme-Linked-ImmunoSorbed-Assay (ELISA), these assemblies were up to two-orders of magnitude more sensitive than commercial HRP-based reagents. Assemblies of different composition displayed different efficacy, indicating that the system functionality can be fine-tuned. Within-assay variability (CV%), measured to assess if the assembly procedure is reproducible, was within 10%. Stability experiments demonstrated that the functionalyzed assemblies are stable in solution for more than one week. In principle, any biotinylated function can be loaded onto the core particle, whose high loading capacity and tunability may open the way towards further application in biomedicine.
Characterization of multi-functional nanosystems based on the avidin-nucleic acid interaction as signal enhancers in immuno-detection
REALDON, NICOLA
2012-01-01
Abstract
The Avidin-Nucleic-Acids-Nano-Assembly (ANANAS) is a kind of soft poly-avidin nanoparticle originating from the high affinity interaction between avidin and the nucleic acids. In this work we investigated the possibility of transforming ANANAS cores into stoichiometrically controlled multi-functional nanoparticles through a “one-pot” procedure, and we measured in a quantitative way their ability to work as reagents for enhanced immunodiagnostic detection. Initially, we measured the ANANAS loading capability for biotinylated proteins of different nature. About 200 molecules of biotin-horseradish-peroxidase (40KDa b-HRP) and 60 molecules of biotin-immunoglobulin-G (150KDa b-IgG) could be accommodated onto each nanoparticle, showing that steric limitations dictate the number of loadable entities. Stoichiometrically controlled functional assemblies were generated by mixing core particles with sub-saturating amounts of b-HRP and b-IgG. When applied as detection reagents in an Enzyme-Linked-ImmunoSorbed-Assay (ELISA), these assemblies were up to two-orders of magnitude more sensitive than commercial HRP-based reagents. Assemblies of different composition displayed different efficacy, indicating that the system functionality can be fine-tuned. Within-assay variability (CV%), measured to assess if the assembly procedure is reproducible, was within 10%. Stability experiments demonstrated that the functionalyzed assemblies are stable in solution for more than one week. In principle, any biotinylated function can be loaded onto the core particle, whose high loading capacity and tunability may open the way towards further application in biomedicine.File | Dimensione | Formato | |
---|---|---|---|
Morpurgo et al. Anal chem 2012.pdf
non disponibili
Licenza:
Accesso ristretto
Dimensione
1.43 MB
Formato
Adobe PDF
|
1.43 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.