Transthyretin binders have previously been used to improve the pharmacokinetic properties of small-molecule drug conjugates and could, thus, be utilized for radiopharmaceuticals as an alternative to the widely explored "albumin binder concept". In this study, a novel PSMA ligand modified with a transthyretin-binding entity (TB-01) was synthesized and labeled with lutetium-177 to obtain [Lu-177]Lu-PSMA-TB-01. A high and specific uptake of [Lu-177]Lu-PSMA-TB-01 was found in PSMA-positive PC-3 PIP cells (69 +/- 3% after 4 h incubation), while uptake in PSMA-negative PC-3 flu cells was negligible (<1%). In vitro binding studies showed a 174-fold stronger affinity of [Lu-177]Lu-PSMA-TB-01 to transthyretin than to human serum albumin. Biodistribution studies in PC-3 PIP/flu tumor-bearing mice confirmed the enhanced blood retention of [Lu-177]Lu-PSMA-TB-01 (16 +/- 1% IA/g at 1 h p.i.), which translated to a high tumor uptake (69 +/- 13% IA/g at 4 h p.i.) with only slow wash-out over time (31 +/- 8% IA/g at 96 h p.i.), while accumulation in the PC-3 flu tumor and non-targeted normal tissue was reasonably low. Further optimization of the radioligand design would be necessary to fine-tune the biodistribution and enable its use for therapeutic purposes. This study was the first of this kind and could motivate the use of the "transthyretin binder concept" for the development of future radiopharmaceuticals.

Design and Preclinical Evaluation of a Novel Prostate-Specific Membrane Antigen Radioligand Modified with a Transthyretin Binder

Giovanni Marzaro;
2024-01-01

Abstract

Transthyretin binders have previously been used to improve the pharmacokinetic properties of small-molecule drug conjugates and could, thus, be utilized for radiopharmaceuticals as an alternative to the widely explored "albumin binder concept". In this study, a novel PSMA ligand modified with a transthyretin-binding entity (TB-01) was synthesized and labeled with lutetium-177 to obtain [Lu-177]Lu-PSMA-TB-01. A high and specific uptake of [Lu-177]Lu-PSMA-TB-01 was found in PSMA-positive PC-3 PIP cells (69 +/- 3% after 4 h incubation), while uptake in PSMA-negative PC-3 flu cells was negligible (<1%). In vitro binding studies showed a 174-fold stronger affinity of [Lu-177]Lu-PSMA-TB-01 to transthyretin than to human serum albumin. Biodistribution studies in PC-3 PIP/flu tumor-bearing mice confirmed the enhanced blood retention of [Lu-177]Lu-PSMA-TB-01 (16 +/- 1% IA/g at 1 h p.i.), which translated to a high tumor uptake (69 +/- 13% IA/g at 4 h p.i.) with only slow wash-out over time (31 +/- 8% IA/g at 96 h p.i.), while accumulation in the PC-3 flu tumor and non-targeted normal tissue was reasonably low. Further optimization of the radioligand design would be necessary to fine-tune the biodistribution and enable its use for therapeutic purposes. This study was the first of this kind and could motivate the use of the "transthyretin binder concept" for the development of future radiopharmaceuticals.
2024
PC-3 PIP tumor cells
PSMA radioligand
lutetium-177
plasma protein binding
prostate cancer
transthyretin binder
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1146054
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact