BACKGROUND AND PURPOSE: Cholecystokinin is known to exert stimulant actions on intestinal motility via activation of type 1 cholecystokinin receptors (CCK(1)). However, the role played by cholecystokinin 2 (CCK(2)) receptors in the regulation of gut motility remains undetermined. This study was designed to examine the influence of CCK(2) receptors on the contractile activity of human distal colon. EXPERIMENTAL APPROACH: The effects of compounds acting on CCK(2) receptors were assessed in vitro on motor activity of longitudinal smooth muscle, under basal conditions as well as in the presence of KCl-induced contractions or transmural electrical stimulation. KEY RESULTS: Cholecystokinin octapeptide sulphate induced concentration-dependent contractions which were enhanced by GV150013 (CCK(2) receptor antagonist; +57% at 0.01 microM). These effects were unaffected by tetrodotoxin. The enhancing actions of GV150013 on contractions evoked by cholecystokinin octapeptide sulphate were unaffected by N(omega)-propyl-L-arginine (NPA, neuronal nitric oxide synthase inhibitor), while they were prevented by N(omega)-nitro-L-arginine methylester (L-NAME, non-selective nitric oxide synthase inhibitor). In the presence of KCl-induced contractions, cholecystokinin octapeptide sulphate elicited concentration-dependent relaxations (-36%), which were unaffected by NPA, but were counteracted by GV150013 or L-NAME. The application of electrical stimuli evoked phasic contractions which were enhanced by GV150013 (+41 % at 0.01 microM). CONCLUSIONS AND IMPLICATIONS: CCK(2) receptors mediate inhibitory actions of cholecystokinin on motor activity of human distal colon. It is suggested that CCK(2) receptors exert their modulating actions through a nitric oxide pathway, independent of the activity of the neuronal nitric oxide synthase isoform.
Cholecystokinin CCK2 receptors mediate the peptide's inhibitory actions on the contractile activity of human distal colon via the nitric oxide pathway
TUCCORI, MARCO;
2007-01-01
Abstract
BACKGROUND AND PURPOSE: Cholecystokinin is known to exert stimulant actions on intestinal motility via activation of type 1 cholecystokinin receptors (CCK(1)). However, the role played by cholecystokinin 2 (CCK(2)) receptors in the regulation of gut motility remains undetermined. This study was designed to examine the influence of CCK(2) receptors on the contractile activity of human distal colon. EXPERIMENTAL APPROACH: The effects of compounds acting on CCK(2) receptors were assessed in vitro on motor activity of longitudinal smooth muscle, under basal conditions as well as in the presence of KCl-induced contractions or transmural electrical stimulation. KEY RESULTS: Cholecystokinin octapeptide sulphate induced concentration-dependent contractions which were enhanced by GV150013 (CCK(2) receptor antagonist; +57% at 0.01 microM). These effects were unaffected by tetrodotoxin. The enhancing actions of GV150013 on contractions evoked by cholecystokinin octapeptide sulphate were unaffected by N(omega)-propyl-L-arginine (NPA, neuronal nitric oxide synthase inhibitor), while they were prevented by N(omega)-nitro-L-arginine methylester (L-NAME, non-selective nitric oxide synthase inhibitor). In the presence of KCl-induced contractions, cholecystokinin octapeptide sulphate elicited concentration-dependent relaxations (-36%), which were unaffected by NPA, but were counteracted by GV150013 or L-NAME. The application of electrical stimuli evoked phasic contractions which were enhanced by GV150013 (+41 % at 0.01 microM). CONCLUSIONS AND IMPLICATIONS: CCK(2) receptors mediate inhibitory actions of cholecystokinin on motor activity of human distal colon. It is suggested that CCK(2) receptors exert their modulating actions through a nitric oxide pathway, independent of the activity of the neuronal nitric oxide synthase isoform.File | Dimensione | Formato | |
---|---|---|---|
Fornai et al., 2007 BJP CCK Uomo.pdf
non disponibili
Licenza:
Accesso ristretto
Dimensione
227.4 kB
Formato
Adobe PDF
|
227.4 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.