Let $K$ be any field. In this paper we give a complete list of the indecomposable left injective module over the Jacobson algebra $K\langle X,Y\mid XY=1\rangle$, i.e., the free associative $K$-algebra on two (noncommuting) generators, modulo the single relation $XY=1$. This is the natural continuation of the paper of the second two authors with Gene Abrams on the charaterization of the injective envelope of the simple modules over $K\langle X,Y\mid XY=1\rangle$.
Indecomposable Injectives over the Jacobson Algebra
Mantese, Francesca;
2024-01-01
Abstract
Let $K$ be any field. In this paper we give a complete list of the indecomposable left injective module over the Jacobson algebra $K\langle X,Y\mid XY=1\rangle$, i.e., the free associative $K$-algebra on two (noncommuting) generators, modulo the single relation $XY=1$. This is the natural continuation of the paper of the second two authors with Gene Abrams on the charaterization of the injective envelope of the simple modules over $K\langle X,Y\mid XY=1\rangle$.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.