Let $K$ be any field. In this paper we give a complete list of the indecomposable left injective module over the Jacobson algebra $K\langle X,Y\mid XY=1\rangle$, i.e., the free associative $K$-algebra on two (noncommuting) generators, modulo the single relation $XY=1$. This is the natural continuation of the paper of the second two authors with Gene Abrams on the charaterization of the injective envelope of the simple modules over $K\langle X,Y\mid XY=1\rangle$.

Indecomposable Injectives over the Jacobson Algebra

Mantese, Francesca;
2024-01-01

Abstract

Let $K$ be any field. In this paper we give a complete list of the indecomposable left injective module over the Jacobson algebra $K\langle X,Y\mid XY=1\rangle$, i.e., the free associative $K$-algebra on two (noncommuting) generators, modulo the single relation $XY=1$. This is the natural continuation of the paper of the second two authors with Gene Abrams on the charaterization of the injective envelope of the simple modules over $K\langle X,Y\mid XY=1\rangle$.
2024
Leavitt path algebras, injecrive modules
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1143944
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact