Cytosolic proliferating cell nuclear antigen (PCNA) is involved in neutrophil survival and function, in which it acts as a scaffold and associates with proteins involved in apoptosis, NADPH oxidase activation, cytoskeletal dynamics, and metabolism. While the PCNA interactome has been characterized in neutrophils under homeostatic conditions, less is known about neutrophil PCNA in pathophysiological contexts. Granulocyte colony-stimulating factor (G-CSF) is a cytokine produced in response to inflammatory stimuli that regulates many aspects of neutrophil biology. Here, we used isolated normal-density neutrophils from G-CSF-treated haemopoietic stem cell donors (GDs) as a model to understand the role of PCNA during inflammation. Proteomic analysis of the neutrophil cytosol revealed significant differences between GDs and healthy donors (HDs). PCNA was one of the most upregulated proteins in GDs, and the PCNA interactome was significantly different in GDs compared with HDs. Importantly, while PCNA associated with almost all enzymes involved in glycolysis in HDs, these associations were decreased in GDs. Functionally, neutrophils from GDs had a significant increase in glycolysis compared with HDs. Using p21 competitor peptides, we showed that PCNA negatively regulates neutrophil glycolysis in HDs but had no effect on GD neutrophils. These data demonstrate that G-CSF alters the PCNA scaffold, affecting interactions with key glycolytic enzymes, and thus regulates glycolysis, the main energy pathway utilized by neutrophils. By this selective control of glycolysis, PCNA can organize neutrophils functionality in parallel with other PCNA mechanisms of prolonged survival. PCNA may therefore be instrumental in the reprogramming that neutrophils undergo in inflammatory or tumoral settings.G-CSF changes the PCNA scaffold, affecting interactions with key glycolytic enzymes and thereby regulating glycolysis in neutrophils.

G-CSF reshapes the cytosolic PCNA scaffold and modulates glycolysis in neutrophils

Scapini, Patrizia;
2024-01-01

Abstract

Cytosolic proliferating cell nuclear antigen (PCNA) is involved in neutrophil survival and function, in which it acts as a scaffold and associates with proteins involved in apoptosis, NADPH oxidase activation, cytoskeletal dynamics, and metabolism. While the PCNA interactome has been characterized in neutrophils under homeostatic conditions, less is known about neutrophil PCNA in pathophysiological contexts. Granulocyte colony-stimulating factor (G-CSF) is a cytokine produced in response to inflammatory stimuli that regulates many aspects of neutrophil biology. Here, we used isolated normal-density neutrophils from G-CSF-treated haemopoietic stem cell donors (GDs) as a model to understand the role of PCNA during inflammation. Proteomic analysis of the neutrophil cytosol revealed significant differences between GDs and healthy donors (HDs). PCNA was one of the most upregulated proteins in GDs, and the PCNA interactome was significantly different in GDs compared with HDs. Importantly, while PCNA associated with almost all enzymes involved in glycolysis in HDs, these associations were decreased in GDs. Functionally, neutrophils from GDs had a significant increase in glycolysis compared with HDs. Using p21 competitor peptides, we showed that PCNA negatively regulates neutrophil glycolysis in HDs but had no effect on GD neutrophils. These data demonstrate that G-CSF alters the PCNA scaffold, affecting interactions with key glycolytic enzymes, and thus regulates glycolysis, the main energy pathway utilized by neutrophils. By this selective control of glycolysis, PCNA can organize neutrophils functionality in parallel with other PCNA mechanisms of prolonged survival. PCNA may therefore be instrumental in the reprogramming that neutrophils undergo in inflammatory or tumoral settings.G-CSF changes the PCNA scaffold, affecting interactions with key glycolytic enzymes and thereby regulating glycolysis in neutrophils.
2024
G-CSF
PCNA
glycolysis
neutrophil
survival
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1143931
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 5
social impact