In order to improve the sustainability and productivity of modern agriculture, it is mandatory to enhance the efficiency of Nitrogen (N) fertilizers with low-impact and natural strategies, without impairing crop yield and plant health. To achieve these goals, the ZeOliva project conducted an experiment using a zeolite-rich tuff as a soil amendment to improve the efficiency of the N fertilizers and allow a reduction of their inputs. The results of three years of experimentation performed in three different fields in the Emilia-Romagna region (Italy) are presented. In each field, young olive trees grown on zeolite-amended soil (-50% of N-input) were compared to trees grown on unamended soil (100% N-input). Soils and leaves were collected three times every year in each area and analyzed to monitor the efficiency of the zeolite treatment compared to the control. Vegetative measurements were performed along with analysis of pH, Soil Organic Matter and soluble anions in soil samples, whereas total C and N, C discrimination factor and N isotopic signature were investigated for both soils and leaves. Besides some fluctuations of nitrogen species due to the sampling time (Pre-Fert, Post-Fertilization and Harvest), the Total Nitrogen of leaves did not highlight any difference between treatments, which suggest that plant N uptake was not affected by lower N input in the zeolite treatment. Results, including vegetative measurements, showed no significant differences between the two treatments in all the observed variables, although the control received twice the N-input from fertilization. Based on these results, it is proposed that zeolite minerals increased the N retention time in the soil, allowing a better exploitation by plants which led to the same N uptake of the control notwithstanding the reduction in the N inputs. The use of zeolite-rich tuff in olive growing thus allows a reduction in the amount of fertilizer by up to 50% and improves the N use efficiency with many environmental and economic benefits.
Reducing Nitrogen Fertilization in Olive Growing by the Use of Natural Chabazite-Zeolitite as Soil Improver
Medoro, Valeria;
2022-01-01
Abstract
In order to improve the sustainability and productivity of modern agriculture, it is mandatory to enhance the efficiency of Nitrogen (N) fertilizers with low-impact and natural strategies, without impairing crop yield and plant health. To achieve these goals, the ZeOliva project conducted an experiment using a zeolite-rich tuff as a soil amendment to improve the efficiency of the N fertilizers and allow a reduction of their inputs. The results of three years of experimentation performed in three different fields in the Emilia-Romagna region (Italy) are presented. In each field, young olive trees grown on zeolite-amended soil (-50% of N-input) were compared to trees grown on unamended soil (100% N-input). Soils and leaves were collected three times every year in each area and analyzed to monitor the efficiency of the zeolite treatment compared to the control. Vegetative measurements were performed along with analysis of pH, Soil Organic Matter and soluble anions in soil samples, whereas total C and N, C discrimination factor and N isotopic signature were investigated for both soils and leaves. Besides some fluctuations of nitrogen species due to the sampling time (Pre-Fert, Post-Fertilization and Harvest), the Total Nitrogen of leaves did not highlight any difference between treatments, which suggest that plant N uptake was not affected by lower N input in the zeolite treatment. Results, including vegetative measurements, showed no significant differences between the two treatments in all the observed variables, although the control received twice the N-input from fertilization. Based on these results, it is proposed that zeolite minerals increased the N retention time in the soil, allowing a better exploitation by plants which led to the same N uptake of the control notwithstanding the reduction in the N inputs. The use of zeolite-rich tuff in olive growing thus allows a reduction in the amount of fertilizer by up to 50% and improves the N use efficiency with many environmental and economic benefits.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.