Background and aim: Bone as an endocrine organ regulates metabolic processes independently of mineral metabolism through the production/release of proteins collectively named 'osteokines'. Relevant connections were reported between the insulin/glucose system, calcification of the atherosclerotic plaque, and several osteokines. We aimed to test the hypothesis that the osteokine network could be involved in beta-cell function, insulin sensitivity, and vascular damage in a cohort of people with newly diagnosed type 2 diabetes (T2D). Subjects and methods: In 794 drug-naive, GADA-negative, newly-diagnosed T2D patients (mean ± SD age: 59 ± 9.8 years; BMI: 29.3 ± 5.3 kg/m2; HbA1c: 6.6 ± 1.3%) we assessed: plasma concentration of osteocalcin (OCN), osteopontin (OPN), RANKL, and its putative decoy receptor osteoprotegerin (OPG); insulin sensitivity (SI) by hyperinsulinemic euglycemic clamp; beta cell function (BCF), estimated by OGTT minimal modelling and expressed as derivative (DC) and proportional (PC) control. Echo-doppler of carotid and lower limb arteries were also performed in 708 and 701 subjects, respectively. Results: OCN, RANKL and OPG were significantly associated with PC (p < 0.02); OCN was positively related to DC (p = 0.018). OPG was associated with lower IS (p < 0.001). Finally, the higher RANKL levels, the greater was the severity of atherosclerosis in common carotid artery (p < 0.001). Increased OPG and OPN concentrations were related to subclinical atherosclerosis in peripheral arteries of lower limbs (p = 0.023 and p = 0.047, respectively). Conclusion: These data suggest that, in patients with newly diagnosed T2D, the osteokine network crosstalks with the glucose/insulin system and may play a role in modulating the atherosclerotic process.

Interactions of the Osteokines, Glucose/Insulin System and Vascular Risk Networks in Patients With Newly Diagnosed Type 2 Diabetes (VNDS 15)

Zusi, Chiara;Bonetti, Sara;Rinaldi, Elisabetta;Csermely, Alessandro;Boselli, Maria Linda;Santi, Lorenza;Bonora, Enzo;Bonadonna, Riccardo C;Trombetta, Maddalena
2024-01-01

Abstract

Background and aim: Bone as an endocrine organ regulates metabolic processes independently of mineral metabolism through the production/release of proteins collectively named 'osteokines'. Relevant connections were reported between the insulin/glucose system, calcification of the atherosclerotic plaque, and several osteokines. We aimed to test the hypothesis that the osteokine network could be involved in beta-cell function, insulin sensitivity, and vascular damage in a cohort of people with newly diagnosed type 2 diabetes (T2D). Subjects and methods: In 794 drug-naive, GADA-negative, newly-diagnosed T2D patients (mean ± SD age: 59 ± 9.8 years; BMI: 29.3 ± 5.3 kg/m2; HbA1c: 6.6 ± 1.3%) we assessed: plasma concentration of osteocalcin (OCN), osteopontin (OPN), RANKL, and its putative decoy receptor osteoprotegerin (OPG); insulin sensitivity (SI) by hyperinsulinemic euglycemic clamp; beta cell function (BCF), estimated by OGTT minimal modelling and expressed as derivative (DC) and proportional (PC) control. Echo-doppler of carotid and lower limb arteries were also performed in 708 and 701 subjects, respectively. Results: OCN, RANKL and OPG were significantly associated with PC (p < 0.02); OCN was positively related to DC (p = 0.018). OPG was associated with lower IS (p < 0.001). Finally, the higher RANKL levels, the greater was the severity of atherosclerosis in common carotid artery (p < 0.001). Increased OPG and OPN concentrations were related to subclinical atherosclerosis in peripheral arteries of lower limbs (p = 0.023 and p = 0.047, respectively). Conclusion: These data suggest that, in patients with newly diagnosed T2D, the osteokine network crosstalks with the glucose/insulin system and may play a role in modulating the atherosclerotic process.
2024
RANKL
diabetes
osteocalcin
osteokines
osteopontin
osteoprotegerin
subclinical atherosclerosis
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1142466
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact