We consider a gauge-invariant Ginzburg–Landau functional (also known as Abelian Yang–Mills–Higgs model), on Hermitian line bundles over closed Riemannian manifolds of dimension n ≥ 3 . Assuming a logarithmic energy bound in the coupling parameter, we study the asymptotic behaviour of critical points in the London limit. After a convenient choice of the gauge, we show compactness of finite-energy critical points in Sobolev norms. Moreover, thanks to a suitable monotonicity formula, we prove that the energy densities of critical points, rescaled by the logarithm of the coupling parameter, converge to the weight measure of a stationary, rectifiable varifold of codimension 2.

The Yang–Mills–Higgs functional on complex line bundles: Asymptotics for critical points

Canevari, Giacomo;Dipasquale, Federico Luigi
;
Orlandi, Giandomenico
In corso di stampa

Abstract

We consider a gauge-invariant Ginzburg–Landau functional (also known as Abelian Yang–Mills–Higgs model), on Hermitian line bundles over closed Riemannian manifolds of dimension n ≥ 3 . Assuming a logarithmic energy bound in the coupling parameter, we study the asymptotic behaviour of critical points in the London limit. After a convenient choice of the gauge, we show compactness of finite-energy critical points in Sobolev norms. Moreover, thanks to a suitable monotonicity formula, we prove that the energy densities of critical points, rescaled by the logarithm of the coupling parameter, converge to the weight measure of a stationary, rectifiable varifold of codimension 2.
In corso di stampa
Ginzburg–Landau functional; complex line bundles; London limit; stationary varifolds; monotonicity formula; Yang–Mills–Higgs functional
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1136086
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact