Protein semisynthesis approaches are key for gaining insights into the effects of post-translational modifications (PTMs) on the structure and function of modified proteins. Among PTMs, ubiquitination involves the conjugation of a small protein modifier to a substrate amino acid residue and is unique in controlling a variety of cellular processes. Interest has grown in understanding the role of ubiquitination in neurodegenerative conditions, including tauopathies. The latter are characterized by the accumulation of the intrinsically disordered protein tau in the form of neurofibrillary tangles in the brains of patients. The presence of ubiquitinated tau in the pathological aggregates suggests that ubiquitination might play a role in the formation of abnormal protein deposits. In this study, we developed a new strategy, based on dehydroalanine chemistry, to install wild type ubiquitin on a tau repeat domain construct with site-specificity. We optimized a three-step reaction which yielded a good amount of highly pure tau repeat domain ubiquitinated in position 353. The structural features of the conjugate were examined by circular dichroism and NMR spectroscopy. The ubiquitinated tau was challenged in a number of assays: fibrils formation under aggregating conditions in vitro, chemical stability upon exposure to a variety of biological media including cell extracts, and internalization into astrocytes. The results demonstrated the wide applicability of the new semisynthetic strategy for the investigation of ubiquitinated substrates in vitro or in cell, and in particular for studying if ubiquitination has a role in the molecular mechanisms that underlie the aberrant transition of tau into pathological aggregates.
Stable ubiquitin conjugation for biological interrogation of ubiquitinated tau repeat domain
Viola, Giovanna;Trivellato, Daniele;Meulli, Lorenzo;Tira, Roberto;Lauriola, Angela;Munari, Francesca;Montagnana, Martina;Buffelli, Mario;Assfalg, Michael;D'Onofrio, Mariapina
2024-01-01
Abstract
Protein semisynthesis approaches are key for gaining insights into the effects of post-translational modifications (PTMs) on the structure and function of modified proteins. Among PTMs, ubiquitination involves the conjugation of a small protein modifier to a substrate amino acid residue and is unique in controlling a variety of cellular processes. Interest has grown in understanding the role of ubiquitination in neurodegenerative conditions, including tauopathies. The latter are characterized by the accumulation of the intrinsically disordered protein tau in the form of neurofibrillary tangles in the brains of patients. The presence of ubiquitinated tau in the pathological aggregates suggests that ubiquitination might play a role in the formation of abnormal protein deposits. In this study, we developed a new strategy, based on dehydroalanine chemistry, to install wild type ubiquitin on a tau repeat domain construct with site-specificity. We optimized a three-step reaction which yielded a good amount of highly pure tau repeat domain ubiquitinated in position 353. The structural features of the conjugate were examined by circular dichroism and NMR spectroscopy. The ubiquitinated tau was challenged in a number of assays: fibrils formation under aggregating conditions in vitro, chemical stability upon exposure to a variety of biological media including cell extracts, and internalization into astrocytes. The results demonstrated the wide applicability of the new semisynthetic strategy for the investigation of ubiquitinated substrates in vitro or in cell, and in particular for studying if ubiquitination has a role in the molecular mechanisms that underlie the aberrant transition of tau into pathological aggregates.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0045206824004541-main.pdf
accesso aperto
Descrizione: CC BY 4.0 publisher version
Tipologia:
Versione dell'editore
Licenza:
Creative commons
Dimensione
3.21 MB
Formato
Adobe PDF
|
3.21 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.