SARS-CoV-2 infection has been recently shown to induce cellular senescence in vivo. A senescence-like phenotype has been reported in cystic fibrosis (CF) cellular models. Since the previously published data highlighted a low impact of SARS-CoV-2 on CFTR-defective cells, here we aimed to investigate the senescence hallmarks in SARS-CoV-2 infection in the context of a loss of CFTR expression/function. We infected WT and CFTR KO 16HBE14o-cells with SARS-CoV-2 and analyzed both the p21 and Ki67 expression using immunohistochemistry and viral and p21 gene expression using real-time PCR. Prior to SARS-CoV-2 infection, CFTR KO cells displayed a higher p21 and lower Ki67 expression than WT cells. We detected lipid accumulation in CFTR KO cells, identified as lipolysosomes and residual bodies at the subcellular/ultrastructure level. After SARS-CoV-2 infection, the situation reversed, with low p21 and high Ki67 expression, as well as reduced viral gene expression in CFTR KO cells. Thus, the activation of cellular senescence pathways in CFTR-defective cells was reversed by SARS-CoV-2 infection while they were activated in CFTR WT cells. These data uncover a different response of CF and non-CF bronchial epithelial cell models to SARS-CoV-2 infection and contribute to uncovering the molecular mechanisms behind the reduced clinical impact of COVID-19 in CF patients.
Loss of CFTR reverses senescence hallmarks in SARS-CoV-2 infected bronchial epithelial cells
Merigo, Flavia;Lagni, Anna;Boschi, Federico;Bernardi, Paolo;Conti, Anita;Sorio, Claudio;Lotti, Virginia
;Sbarbati, Andrea
2024-01-01
Abstract
SARS-CoV-2 infection has been recently shown to induce cellular senescence in vivo. A senescence-like phenotype has been reported in cystic fibrosis (CF) cellular models. Since the previously published data highlighted a low impact of SARS-CoV-2 on CFTR-defective cells, here we aimed to investigate the senescence hallmarks in SARS-CoV-2 infection in the context of a loss of CFTR expression/function. We infected WT and CFTR KO 16HBE14o-cells with SARS-CoV-2 and analyzed both the p21 and Ki67 expression using immunohistochemistry and viral and p21 gene expression using real-time PCR. Prior to SARS-CoV-2 infection, CFTR KO cells displayed a higher p21 and lower Ki67 expression than WT cells. We detected lipid accumulation in CFTR KO cells, identified as lipolysosomes and residual bodies at the subcellular/ultrastructure level. After SARS-CoV-2 infection, the situation reversed, with low p21 and high Ki67 expression, as well as reduced viral gene expression in CFTR KO cells. Thus, the activation of cellular senescence pathways in CFTR-defective cells was reversed by SARS-CoV-2 infection while they were activated in CFTR WT cells. These data uncover a different response of CF and non-CF bronchial epithelial cell models to SARS-CoV-2 infection and contribute to uncovering the molecular mechanisms behind the reduced clinical impact of COVID-19 in CF patients.File | Dimensione | Formato | |
---|---|---|---|
ijms-25-06185.pdf
accesso aperto
Descrizione: CC BY 4.0 publisher version
Tipologia:
Versione dell'editore
Licenza:
Creative commons
Dimensione
10.39 MB
Formato
Adobe PDF
|
10.39 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.