We study mean-risk optimal portfolio problems where risk is measured by recovery average value at risk, a prominent example in the class of recovery risk measures. We establish existence results in the situation where the joint distribution of portfolio assets is known as well as in the situation where it is uncertain and only assumed to belong to a set of mixtures of benchmark distributions (mixture uncertainty) or to a cloud around a benchmark distribution (box uncertainty). The comparison with the classical average value at risk shows that portfolio selection under its recovery version enables financial institutions to exert better control on the recovery on liabilities while still allowing for tractable computations.
Robust portfolio selection under recovery average value at risk
Munari, Cosimo;
2024-01-01
Abstract
We study mean-risk optimal portfolio problems where risk is measured by recovery average value at risk, a prominent example in the class of recovery risk measures. We establish existence results in the situation where the joint distribution of portfolio assets is known as well as in the situation where it is uncertain and only assumed to belong to a set of mixtures of benchmark distributions (mixture uncertainty) or to a cloud around a benchmark distribution (box uncertainty). The comparison with the classical average value at risk shows that portfolio selection under its recovery version enables financial institutions to exert better control on the recovery on liabilities while still allowing for tractable computations.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.