A growing amount of evidence suggests that gut microbiota plays an important role in human health, including a possible role in the pathogenesis of rheumatic and musculoskeletal diseases (RMD). We analysed the current evidence about the role of microbiota in rheumatoid arthritis (RA), spondyloarthritis (SpA), systemic lupus erythematosus (SLE) and systemic sclerosis (SSc). In RA, we found a general consensus regarding a reduction of diversity and a specific bacterial signature, with consistent changes according to the different ethnic and geographical areas. The major pathogenetic role in RA is recognised for P. copri, L. salivarius and Collinsella, even if findings become more heterogeneous when considering established disease. In SpA, we found a relative gut abundance of Akkermansia, Coprococcus, Ruminoccocus and a relative reduction in Bacterioides and Firmicutes spp. Human and preclinical data suggest loss of mucosal barrier, increased permeability and Th1- and Th17-mediated inflammation. Additionally, HLA-B27 seems to play a role in shaping the intestinal microbiota and the consequent inflammation. In SLE, the typical gut microbiota signature was characterised by a reduction in the Firmicutes/Bacteroidetes ratio and by enrichment of Rhodococcus, Eggerthella, Klebsiella, Prevotella, Eubacterium and Flavonifractor, even if their real pathogenic impact remains unclear. In SSc, gastrointestinal dysbiosis is well documented with an increase of pro-inflammatory species (Fusobacterium, Prevotella, Ruminococcus, Akkermansia, gamma-Proteobacteria, Erwinia, Trabsulsiella, Bifidobacterium, Lactobacillus, Firmicutes and Actinobacteria) and a reduction of species as Faecalibacterium, Clostridium, Bacteroidetes and Rikenella. In conclusion, seems possible to recognise a distinct gut microbiota profile for each RMD, even if significant differences in bacterial species do exist between different studies and there is a high risk of bias due to the cross-sectional nature of such studies. Therefore longitudinal studies are needed, especially on patients with preclinical and early disease, to investigate the real role of gut microbiota in the pathogenesis of RMD.

The potential pathogenic role of gut microbiota in rheumatic diseases: a human-centred narrative review

Bixio, Riccardo;Bertelle, Davide;Bertoldo, Eugenia;Morciano, Andrea;Rossini, Maurizio
2023-01-01

Abstract

A growing amount of evidence suggests that gut microbiota plays an important role in human health, including a possible role in the pathogenesis of rheumatic and musculoskeletal diseases (RMD). We analysed the current evidence about the role of microbiota in rheumatoid arthritis (RA), spondyloarthritis (SpA), systemic lupus erythematosus (SLE) and systemic sclerosis (SSc). In RA, we found a general consensus regarding a reduction of diversity and a specific bacterial signature, with consistent changes according to the different ethnic and geographical areas. The major pathogenetic role in RA is recognised for P. copri, L. salivarius and Collinsella, even if findings become more heterogeneous when considering established disease. In SpA, we found a relative gut abundance of Akkermansia, Coprococcus, Ruminoccocus and a relative reduction in Bacterioides and Firmicutes spp. Human and preclinical data suggest loss of mucosal barrier, increased permeability and Th1- and Th17-mediated inflammation. Additionally, HLA-B27 seems to play a role in shaping the intestinal microbiota and the consequent inflammation. In SLE, the typical gut microbiota signature was characterised by a reduction in the Firmicutes/Bacteroidetes ratio and by enrichment of Rhodococcus, Eggerthella, Klebsiella, Prevotella, Eubacterium and Flavonifractor, even if their real pathogenic impact remains unclear. In SSc, gastrointestinal dysbiosis is well documented with an increase of pro-inflammatory species (Fusobacterium, Prevotella, Ruminococcus, Akkermansia, gamma-Proteobacteria, Erwinia, Trabsulsiella, Bifidobacterium, Lactobacillus, Firmicutes and Actinobacteria) and a reduction of species as Faecalibacterium, Clostridium, Bacteroidetes and Rikenella. In conclusion, seems possible to recognise a distinct gut microbiota profile for each RMD, even if significant differences in bacterial species do exist between different studies and there is a high risk of bias due to the cross-sectional nature of such studies. Therefore longitudinal studies are needed, especially on patients with preclinical and early disease, to investigate the real role of gut microbiota in the pathogenesis of RMD.
2023
Microbiota
Pathogenesis
Rheumatic and musculoskeletal diseases
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1122407
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact