Background: Laser therapies can cause hyper- and hypopigmentation of the skin. There is little evidence in the literature of effective treatments for these types of problems in Fitzpatrick skin phototypes IV-VI. The main aim of this retrospective study is to evaluate the effects of a new therapy that combines the application of electromagnetic fields and vacuum on a subject with Fitzpatrick skin phototype VI, who presented extensive, laser-induced facial dyschromia. The secondary aim is to test the effectiveness of a free imaging software for assessing skin pigmentation. Methods: The level of improvement after therapy was evaluated, with a 5-point Likert scale, one month after the end of the treatment by the subject and by the doctor who performed the treatment, and by two blinded dermatologists. With the free software, a three-dimensional reconstruction of the treated area and the evaluation of the color distribution were performed. Results: Both the subject and the doctors involved in the study positively evaluated the effects of the treatment. The image analysis highlighted the homogenization of the skin color in the treated area. Conclusions: The combination of electromagnetic fields and vacuum for dyschromia treatments appears promising. The new method of assessing melanin levels resulted particularly efficient.
Hyper- and hypopigmentation in a subject with Fitzpatrick skin phototype VI: a new treatment option
	
	
	
		
		
		
		
		
	
	
	
	
	
	
	
	
		
		
		
		
		
			
			
			
		
		
		
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
		
		
		
	
Veronese, Sheila
;Sbarbati, Andrea
	
		
		
	
			2024-01-01
Abstract
Background: Laser therapies can cause hyper- and hypopigmentation of the skin. There is little evidence in the literature of effective treatments for these types of problems in Fitzpatrick skin phototypes IV-VI. The main aim of this retrospective study is to evaluate the effects of a new therapy that combines the application of electromagnetic fields and vacuum on a subject with Fitzpatrick skin phototype VI, who presented extensive, laser-induced facial dyschromia. The secondary aim is to test the effectiveness of a free imaging software for assessing skin pigmentation. Methods: The level of improvement after therapy was evaluated, with a 5-point Likert scale, one month after the end of the treatment by the subject and by the doctor who performed the treatment, and by two blinded dermatologists. With the free software, a three-dimensional reconstruction of the treated area and the evaluation of the color distribution were performed. Results: Both the subject and the doctors involved in the study positively evaluated the effects of the treatment. The image analysis highlighted the homogenization of the skin color in the treated area. Conclusions: The combination of electromagnetic fields and vacuum for dyschromia treatments appears promising. The new method of assessing melanin levels resulted particularly efficient.| File | Dimensione | Formato | |
|---|---|---|---|
| 
									
										
										
										
										
											
												
												
												    
												
											
										
									
									
										
										
											jcm-13-01036.pdf
										
																				
									
										
											 accesso aperto 
											Descrizione: CC BY 4.0 publisher version
										 
									
									
									
										
											Tipologia:
											Versione dell'editore
										 
									
									
									
									
										
											Licenza:
											
											
												Creative commons
												
												
													
													
													
												
												
											
										 
									
									
										Dimensione
										7.43 MB
									 
									
										Formato
										Adobe PDF
									 
										
										
								 | 
								7.43 MB | Adobe PDF | Visualizza/Apri | 
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



