: During the COVID-19 pandemic, economists have struggled to obtain reliable economic predictions, with standard models becoming outdated and their forecasting performance deteriorating rapidly. This paper presents two novelties that could be adopted by forecasting institutions in unconventional times. The first innovation is the construction of an extensive data set for macroeconomic forecasting in Europe. We collect more than a thousand time series from conventional and unconventional sources, complementing traditional macroeconomic variables with timely big data indicators and assessing their added value at nowcasting. The second novelty consists of a methodology to merge an enormous amount of non-encompassing data with a large battery of classical and more sophisticated forecasting methods in a seamlessly dynamic Bayesian framework. Specifically, we introduce an innovative "selection prior" that is used not as a way to influence model outcomes, but as a selecting device among competing models. By applying this methodology to the COVID-19 crisis, we show which variables are good predictors for nowcasting Gross Domestic Product and draw lessons for dealing with possible future crises.

Testing big data in a big crisis: Nowcasting under Covid-19

Lorenzo Frattarolo;
2023-01-01

Abstract

: During the COVID-19 pandemic, economists have struggled to obtain reliable economic predictions, with standard models becoming outdated and their forecasting performance deteriorating rapidly. This paper presents two novelties that could be adopted by forecasting institutions in unconventional times. The first innovation is the construction of an extensive data set for macroeconomic forecasting in Europe. We collect more than a thousand time series from conventional and unconventional sources, complementing traditional macroeconomic variables with timely big data indicators and assessing their added value at nowcasting. The second novelty consists of a methodology to merge an enormous amount of non-encompassing data with a large battery of classical and more sophisticated forecasting methods in a seamlessly dynamic Bayesian framework. Specifically, we introduce an innovative "selection prior" that is used not as a way to influence model outcomes, but as a selecting device among competing models. By applying this methodology to the COVID-19 crisis, we show which variables are good predictors for nowcasting Gross Domestic Product and draw lessons for dealing with possible future crises.
2023
Bayesian model averaging
Big data
COVID-19 pandemic
Nowcasting
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0169207022001431-main.pdf

accesso aperto

Tipologia: Versione dell'editore
Licenza: Creative commons
Dimensione 524.78 kB
Formato Adobe PDF
524.78 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1119666
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact