According to the fifth edition of the World Health Organization (WHO) classification of tumors of the central nervous system (CNS), diffuse midline glioma H3 K27-altered is a grade 4 infiltrative glioma that arises from midline anatomical structures and is characterized by the loss of H3 K27me3 and co-occurring H3 K27M mutation or EZHIP overexpression. However, the H3 K27M mutation has also been observed in circumscribed gliomas and glioneuronal tumors arising in midline anatomical structures, which may result in diagnostic pitfalls.Rosette-forming glioneuronal tumor (RGNT) is a CNS WHO grade 1 neoplasm that histologically features neurocytic and glial components and originates in midline anatomical structures.This study aimed to assess whether RGNTs, similar to other midline tumors, may exhibit immunohistochemical loss of H3 K27me3 and harbor the H3 K27M mutation.All seven analyzed RGNTs displayed immunohistochemical loss of H3 K27me3 in all tumor cells or H3 K27me3 mosaic immunostaining. In one case, H3 K27me3 loss was associated with the H3 K27M mutation, whereas the other six cases did not exhibit any H3 mutations or EZHIP overexpression. During a follow-up period of 23 months, the H3 K27M-mutant case remained unchanged in size despite partial resection, indicating that the H3 mutation may not confer higher biological aggressiveness to RGNT.The immunohistochemical loss of H3 K27me3 co-occurring with the H3 K27M mutation may result in the potential misdiagnosis of RGNT, especially in cases of small biopsy specimens consisting of only the glial component.
H3 K27M mutation in rosette-forming glioneuronal tumors: a potential diagnostic pitfall
Marastoni, Elena;Ammendola, Serena;Masotto, Barbara;Feletti, Alberto;Barresi, Valeria
2024-01-01
Abstract
According to the fifth edition of the World Health Organization (WHO) classification of tumors of the central nervous system (CNS), diffuse midline glioma H3 K27-altered is a grade 4 infiltrative glioma that arises from midline anatomical structures and is characterized by the loss of H3 K27me3 and co-occurring H3 K27M mutation or EZHIP overexpression. However, the H3 K27M mutation has also been observed in circumscribed gliomas and glioneuronal tumors arising in midline anatomical structures, which may result in diagnostic pitfalls.Rosette-forming glioneuronal tumor (RGNT) is a CNS WHO grade 1 neoplasm that histologically features neurocytic and glial components and originates in midline anatomical structures.This study aimed to assess whether RGNTs, similar to other midline tumors, may exhibit immunohistochemical loss of H3 K27me3 and harbor the H3 K27M mutation.All seven analyzed RGNTs displayed immunohistochemical loss of H3 K27me3 in all tumor cells or H3 K27me3 mosaic immunostaining. In one case, H3 K27me3 loss was associated with the H3 K27M mutation, whereas the other six cases did not exhibit any H3 mutations or EZHIP overexpression. During a follow-up period of 23 months, the H3 K27M-mutant case remained unchanged in size despite partial resection, indicating that the H3 mutation may not confer higher biological aggressiveness to RGNT.The immunohistochemical loss of H3 K27me3 co-occurring with the H3 K27M mutation may result in the potential misdiagnosis of RGNT, especially in cases of small biopsy specimens consisting of only the glial component.File | Dimensione | Formato | |
---|---|---|---|
s00428-024-03739-2.pdf
accesso aperto
Descrizione: CC BY 4.0 publisher version
Tipologia:
Versione dell'editore
Licenza:
Creative commons
Dimensione
1.82 MB
Formato
Adobe PDF
|
1.82 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.