Background aims: Adipose mesenchymal stem cells (ASCs) represent a promising therapeutic approach in inflammatory neurological disorders, including multiple sclerosis (MS). Recent lines of evidence indicate that most biological activities of ASCs are mediated by the delivery of soluble factors enclosed in extracellular vesicles (EVs). Indeed, we have previously demonstrated that small EVs derived from ASCs (ASC-EVs) ameliorate experimental autoimmune encephalomyelitis (EAE), a murine model of MS. The precise mechanisms and molecular/cellular target of EVs during EAE are still unknown. Methods: To investigate the homing of ASC-EVs, we intravenously injected small EVs loaded with ultra-small superparamagnetic iron oxide nanoparticles (USPIO) at disease onset in EAE-induced C57Bl/6J mice. Histochemical analysis and transmission electron microscopy were carried out 48 h after EV treatment. Moreover, to assess the cellular target of EVs, flow cytometry on cells extracted ex vivo from EAE mouse lymph nodes was performed. Results: Histochemical and ultrastructural analysis showed the presence of labeled EVs in lymph nodes but not in lungs and spinal cord of EAE injected mice. Moreover, we identified the cellular target of EVs in EAE lymph nodes by flow cytometry: ASC-EVs were preferentially located in macrophages, with a consistent amount also noted in dendritic cells and CD4+ T lymphocytes. Conclusions: This represents the first direct evidence of the privileged localization of ASC-EVs in draining lymph nodes of EAE after systemic injection. These data provide prominent information on the distribution, uptake and retention of ASC-EVs, which may help in the development of EV-based therapy in MS.
Extracellular vesicles from adipose mesenchymal stem cells target inflamed lymph nodes in experimental autoimmune encephalomyelitis
	
	
	
		
		
		
		
		
	
	
	
	
	
	
	
	
		
		
		
		
		
			
			
			
		
		
		
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
		
		
		
	
Turano, Ermanna;Scambi, Ilaria;Bonafede, Roberta;Dusi, Silvia;Angelini, Gabriele;Lopez, Nicola;Rossi, Barbara;Constantin, Gabriela;Mariotti, Raffaella;Bonetti, Bruno
	
		
		
	
			2024-01-01
Abstract
Background aims: Adipose mesenchymal stem cells (ASCs) represent a promising therapeutic approach in inflammatory neurological disorders, including multiple sclerosis (MS). Recent lines of evidence indicate that most biological activities of ASCs are mediated by the delivery of soluble factors enclosed in extracellular vesicles (EVs). Indeed, we have previously demonstrated that small EVs derived from ASCs (ASC-EVs) ameliorate experimental autoimmune encephalomyelitis (EAE), a murine model of MS. The precise mechanisms and molecular/cellular target of EVs during EAE are still unknown. Methods: To investigate the homing of ASC-EVs, we intravenously injected small EVs loaded with ultra-small superparamagnetic iron oxide nanoparticles (USPIO) at disease onset in EAE-induced C57Bl/6J mice. Histochemical analysis and transmission electron microscopy were carried out 48 h after EV treatment. Moreover, to assess the cellular target of EVs, flow cytometry on cells extracted ex vivo from EAE mouse lymph nodes was performed. Results: Histochemical and ultrastructural analysis showed the presence of labeled EVs in lymph nodes but not in lungs and spinal cord of EAE injected mice. Moreover, we identified the cellular target of EVs in EAE lymph nodes by flow cytometry: ASC-EVs were preferentially located in macrophages, with a consistent amount also noted in dendritic cells and CD4+ T lymphocytes. Conclusions: This represents the first direct evidence of the privileged localization of ASC-EVs in draining lymph nodes of EAE after systemic injection. These data provide prominent information on the distribution, uptake and retention of ASC-EVs, which may help in the development of EV-based therapy in MS.| File | Dimensione | Formato | |
|---|---|---|---|
| 
									
										
										
										
										
											
												
												
												    
												
											
										
									
									
										
										
											1-s2.0-S146532492400001X-main.pdf
										
																				
									
										
											 accesso aperto 
											Descrizione: CC BY-NC-ND 4.0 publisher version
										 
									
									
									
										
											Tipologia:
											Versione dell'editore
										 
									
									
									
									
										
											Licenza:
											
											
												Creative commons
												
												
													
													
													
												
												
											
										 
									
									
										Dimensione
										2.98 MB
									 
									
										Formato
										Adobe PDF
									 
										
										
								 | 
								2.98 MB | Adobe PDF | Visualizza/Apri | 
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



