Discrimination of honey based on geographical origin is a common fraudulent practice and is one of the most investigated topics in honey authentication. This research aims to discriminate honeys according to their geographical origin by combining elemental fingerprinting with machinelearning techniques. In particular, the main objective of this study is to distinguish the origin of unifloral and multifloral honeys produced in neighboring regions, such as Sardinia (Italy) and Spain. The elemental compositions of 247 honeys were determined using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The origins of honey were differentiated using Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Random Forest (RF). Compared to LDA, RF demonstrated greater stability and better classification performance. The best classification was based on geographical origin, achieving 90% accuracy using Na, Mg, Mn, Sr, Zn, Ce, Nd, Eu, and Tb as predictors

Elemental Fingerprinting Combined with Machine Learning Techniques as a Powerful Tool for Geographical Discrimination of Honeys from Nearby Regions

Matteo Migliorini;Marco Ciulu;Roberto Chignola;
2024-01-01

Abstract

Discrimination of honey based on geographical origin is a common fraudulent practice and is one of the most investigated topics in honey authentication. This research aims to discriminate honeys according to their geographical origin by combining elemental fingerprinting with machinelearning techniques. In particular, the main objective of this study is to distinguish the origin of unifloral and multifloral honeys produced in neighboring regions, such as Sardinia (Italy) and Spain. The elemental compositions of 247 honeys were determined using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The origins of honey were differentiated using Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Random Forest (RF). Compared to LDA, RF demonstrated greater stability and better classification performance. The best classification was based on geographical origin, achieving 90% accuracy using Na, Mg, Mn, Sr, Zn, Ce, Nd, Eu, and Tb as predictors
2024
honey; geographical classification; botanical classification; elements; ICP-MS
File in questo prodotto:
File Dimensione Formato  
foods-13-00243.pdf

accesso aperto

Licenza: Copyright dell'editore
Dimensione 1.72 MB
Formato Adobe PDF
1.72 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1117126
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact