: Klebsiella pneumoniae is one of the main opportunistic pathogens that cause a broad spectrum of diseases with increasingly frequent acquisition of resistance to antibiotics, namely carbapenems. This study focused on the characterization of 23 OXA-48-like carbapenemase-producing K. pneumoniae isolates using phenotypic and molecular tests. Phenotypic determination of the presence of β-lactamases was performed using the extended-spectrum beta-lactamase (ESBL) NP test, and phenotypic determination of the presence of carbapenemase was based on the Carba NP test. Antimicrobial susceptibility tests were performed to assess the resistance against carbapenems. Molecular characterization of ESBL genes and carbapenemase genes (blaOXA-48, blaKPC, blaVIM, and blaNDM) was performed using polymerase chain reaction (PCR) techniques. In addition, K. pneumoniae strains were analyzed for their relatedness using multilocus sequence typing PCR analysis based on the Institut Pasteur protocol, which produces allelic profiles that contain their evolutionary and geographic pattern. Following further Sanger sequencing of the blaOXA-48 genes, no genetic mutations were found. Some OXA-48-producing K. pneumoniae isolates coharbored blaKPC, blaNDM, and blaVIM genes, which encode other carbapenemases that can hydrolyze carbapenem antibiotics. The final part of the study focused on the characterization of the plasmid profiles of all isolates to better understand the spreading of the IncL/M blaOXA-48 plasmid gene. The plasmid profile also revealed other incompatibility groups, suggesting that other plasmid genes are spreading in K. pneumoniae isolates, which can coharbor and spread different carbapenemases simultaneously.

Different OXA-Carbapenemases in Genetically Unrelated Klebsiella pneumoniae Strains Isolated in a North Italian Hospital During Multidrug Resistance Screening

Addis, Elena;Unali, Ilaria;Bertoncelli, Anna;Cecchetto, Riccardo;Mazzariol, Annarita
2024-01-01

Abstract

: Klebsiella pneumoniae is one of the main opportunistic pathogens that cause a broad spectrum of diseases with increasingly frequent acquisition of resistance to antibiotics, namely carbapenems. This study focused on the characterization of 23 OXA-48-like carbapenemase-producing K. pneumoniae isolates using phenotypic and molecular tests. Phenotypic determination of the presence of β-lactamases was performed using the extended-spectrum beta-lactamase (ESBL) NP test, and phenotypic determination of the presence of carbapenemase was based on the Carba NP test. Antimicrobial susceptibility tests were performed to assess the resistance against carbapenems. Molecular characterization of ESBL genes and carbapenemase genes (blaOXA-48, blaKPC, blaVIM, and blaNDM) was performed using polymerase chain reaction (PCR) techniques. In addition, K. pneumoniae strains were analyzed for their relatedness using multilocus sequence typing PCR analysis based on the Institut Pasteur protocol, which produces allelic profiles that contain their evolutionary and geographic pattern. Following further Sanger sequencing of the blaOXA-48 genes, no genetic mutations were found. Some OXA-48-producing K. pneumoniae isolates coharbored blaKPC, blaNDM, and blaVIM genes, which encode other carbapenemases that can hydrolyze carbapenem antibiotics. The final part of the study focused on the characterization of the plasmid profiles of all isolates to better understand the spreading of the IncL/M blaOXA-48 plasmid gene. The plasmid profile also revealed other incompatibility groups, suggesting that other plasmid genes are spreading in K. pneumoniae isolates, which can coharbor and spread different carbapenemases simultaneously.
2024
OXA-48 carbapenemase; blaOXA-48; carbapenem-resistant Klebsiella pneumoniae; carbapenemases
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1116778
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact