Chitosan films have attracted increased attention in the field of sensors because of chitosan's unique chemico-physical properties, including high adsorption capacity, filmability and transparency. A chitosan film sensor was developed through the dispersion of an ammonia specific reagent (Nessler's reagent) into a chitosan film matrix. The chitosan film sensor was characterized to assess the film's properties by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). A gas diffusion device was prepared with the chitosan film sensor, enabling the collection and detection of ammonia vapor from biological samples. The chitosan film sensor color change was correlated with the ammonia concentration in samples of human serum and artificial urine. This method enabled facile ammonia detection and concentration measurement, making the sensor useful not only in clinical laboratories, but also for point-of-care devices and wherever there is limited access to modern laboratory facilities.
Chitosan Film Sensor for Ammonia Detection in Microdiffusion Analytical Devices
Giacomo Musile
;Paolo Caricato;Franco Tagliaro;
2023-01-01
Abstract
Chitosan films have attracted increased attention in the field of sensors because of chitosan's unique chemico-physical properties, including high adsorption capacity, filmability and transparency. A chitosan film sensor was developed through the dispersion of an ammonia specific reagent (Nessler's reagent) into a chitosan film matrix. The chitosan film sensor was characterized to assess the film's properties by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). A gas diffusion device was prepared with the chitosan film sensor, enabling the collection and detection of ammonia vapor from biological samples. The chitosan film sensor color change was correlated with the ammonia concentration in samples of human serum and artificial urine. This method enabled facile ammonia detection and concentration measurement, making the sensor useful not only in clinical laboratories, but also for point-of-care devices and wherever there is limited access to modern laboratory facilities.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.