Hyperaccumulation is a fascinating trait displayed by a few plant species able to accumulate large amounts of metal ions in above-ground tissues without symptoms of toxicity. Noccaea caerulescens is a recognized model system to study metal hyperaccumulation and hypertolerance. A N. caerulescens population naturally growing on a serpentine soil in the Italian Apennine Mountains, Monte Prinzera, was chosen for the study here reported. Plants were grown hydroponically and treated with different metals, in excess or limiting concentrations. Accumulated metals were quantified in shoots and roots by means of ICP-MS. By real-time PCR analysis, the expression of metal transporters and Fe deficiency-regulated genes was compared in the shoots and roots of treated plants. N. caerulescens Monte Prinzera confirmed its ability to hypertolerate and hyperaccumulate Ni but not Zn. Moreover, excess Ni does not induce Fe deficiency as in Ni-sensitive species and instead competes with Fe translocation rather than its uptake.
Metal Interactions in the Ni Hyperaccumulating Population of Noccaea caerulescens Monte Prinzera
Fasani, Elisa;Zamboni, Anita;Sorio, Daniela;Furini, Antonella;DalCorso, Giovanni
2023-01-01
Abstract
Hyperaccumulation is a fascinating trait displayed by a few plant species able to accumulate large amounts of metal ions in above-ground tissues without symptoms of toxicity. Noccaea caerulescens is a recognized model system to study metal hyperaccumulation and hypertolerance. A N. caerulescens population naturally growing on a serpentine soil in the Italian Apennine Mountains, Monte Prinzera, was chosen for the study here reported. Plants were grown hydroponically and treated with different metals, in excess or limiting concentrations. Accumulated metals were quantified in shoots and roots by means of ICP-MS. By real-time PCR analysis, the expression of metal transporters and Fe deficiency-regulated genes was compared in the shoots and roots of treated plants. N. caerulescens Monte Prinzera confirmed its ability to hypertolerate and hyperaccumulate Ni but not Zn. Moreover, excess Ni does not induce Fe deficiency as in Ni-sensitive species and instead competes with Fe translocation rather than its uptake.File | Dimensione | Formato | |
---|---|---|---|
2023 - Bioloy - Metal interaction in Noccaea Monte Prinzera.pdf
accesso aperto
Licenza:
Dominio pubblico
Dimensione
2.21 MB
Formato
Adobe PDF
|
2.21 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.