Background: Inadequate hepcidin production leads to iron overload in nearly all types of hemochromatosis. We explored the acute response of hepcidin to iron challenge in 25 patients with HFE-hemochromatosis, in two with TFR2-hemochromatosis and in 13 controls. Sixteen patients (10 C282Y/C282Y homozygotes, 6 C282Y/H63D compound heterozygotes) had increased iron stores, while nine (6 C282Y/C282Y homozygotes, 3 C282Y/H63D compound heterozygotes) were studied after phlebotomy-induced normalization of iron stores. Design and methods: We analyzed serum iron, transferrin saturation, and serum hepcidin by both enzyme-linked immunosorbent assay and mass-spectrometry at baseline, and 4, 8, 12 and 24 hours after a single 65-mg dose of oral iron. Results: Serum iron and transferrin saturation significantly increased at 4 hours and returned to baseline values at 8-12 hours in all groups, except in the iron-normalized patients who showed the highest and longest increase of both parameters. The level of hepcidin increased significantly at 4 hours and returned to baseline at 24 hours in controls and in the C282Y/H63D compound heterozygotes at diagnosis. The hepcidin response was smaller in C282Y-homozygotes than in controls, barely detectable in the patients with iron-depleted HFE-hemochromatosis and absent in those with TFR2-hemochromatosis. Conclusions Our results are consistent with a scenario in which TFR2 plays a prominent and HFE a contributory role in the hepcidin response to a dose of oral iron. In iron-normalized patients with HFE hemochromatosis, both the low baseline hepcidin level and the weak response to iron contribute to hyperabsorption of iron.

A time course of hepcidin response to iron challenge in patients with HFE and TFR2 hemochromatosis

GIRELLI, Domenico
;
BUSTI, Fabiana;CAMPOSTRINI, Natascia;SANDRI, Marco;
2011-01-01

Abstract

Background: Inadequate hepcidin production leads to iron overload in nearly all types of hemochromatosis. We explored the acute response of hepcidin to iron challenge in 25 patients with HFE-hemochromatosis, in two with TFR2-hemochromatosis and in 13 controls. Sixteen patients (10 C282Y/C282Y homozygotes, 6 C282Y/H63D compound heterozygotes) had increased iron stores, while nine (6 C282Y/C282Y homozygotes, 3 C282Y/H63D compound heterozygotes) were studied after phlebotomy-induced normalization of iron stores. Design and methods: We analyzed serum iron, transferrin saturation, and serum hepcidin by both enzyme-linked immunosorbent assay and mass-spectrometry at baseline, and 4, 8, 12 and 24 hours after a single 65-mg dose of oral iron. Results: Serum iron and transferrin saturation significantly increased at 4 hours and returned to baseline values at 8-12 hours in all groups, except in the iron-normalized patients who showed the highest and longest increase of both parameters. The level of hepcidin increased significantly at 4 hours and returned to baseline at 24 hours in controls and in the C282Y/H63D compound heterozygotes at diagnosis. The hepcidin response was smaller in C282Y-homozygotes than in controls, barely detectable in the patients with iron-depleted HFE-hemochromatosis and absent in those with TFR2-hemochromatosis. Conclusions Our results are consistent with a scenario in which TFR2 plays a prominent and HFE a contributory role in the hepcidin response to a dose of oral iron. In iron-normalized patients with HFE hemochromatosis, both the low baseline hepcidin level and the weak response to iron contribute to hyperabsorption of iron.
2011
hemochromatosis
hepcidin
iron challenge
phlebotomy
transferrin receptor 2
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1115470
Citazioni
  • ???jsp.display-item.citation.pmc??? 30
  • Scopus 67
  • ???jsp.display-item.citation.isi??? 57
social impact