This paper presents a systematic study of the notion of surplus invariance, which plays a natural and important role in the theory of risk measures and capital requirements. So far, this notion has been investigated in the setting of some special spaces of random variables. In this paper, we develop a theory of surplus invariance in its natural framework, namely, that of vector lattices. Besides providing a unifying perspective on the existing literature, we establish a variety of new results including dual representations and extensions of surplus-invariant risk measures and structural results for surplus-invariant acceptance sets. We illustrate the power of the lattice approach by specifying our results to model spaces with a dominating probability, including Orlicz spaces, as well as to robust model spaces without a dominating probability, where the standard topological techniques and exhaustion arguments cannot be applied.

Surplus-invariant risk measures

Cosimo Munari
2020-01-01

Abstract

This paper presents a systematic study of the notion of surplus invariance, which plays a natural and important role in the theory of risk measures and capital requirements. So far, this notion has been investigated in the setting of some special spaces of random variables. In this paper, we develop a theory of surplus invariance in its natural framework, namely, that of vector lattices. Besides providing a unifying perspective on the existing literature, we establish a variety of new results including dual representations and extensions of surplus-invariant risk measures and structural results for surplus-invariant acceptance sets. We illustrate the power of the lattice approach by specifying our results to model spaces with a dominating probability, including Orlicz spaces, as well as to robust model spaces without a dominating probability, where the standard topological techniques and exhaustion arguments cannot be applied.
2020
capital adequacy, limited liability, risk measures, surplus invariance
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1110830
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact