n this paper, we derive a unified perspective for Optimal Transport (OT) and Mean Field Control (MFC) theories to analyse the learning process for Neural Network algorithms in a high-dimensional framework. We consider a Mean Field Neural Network in the context of MFC theory referring to the mean field formulation of OT theory that may allow the development of efficient algorithms in a high-dimensional framework while providing a powerful tool in the context of explainable Artificial Intelligence.

From Optimal Control to Mean Field Optimal Transport via Stochastic Neural Networks

Luca Di Persio;Matteo Garbelli
2023-01-01

Abstract

n this paper, we derive a unified perspective for Optimal Transport (OT) and Mean Field Control (MFC) theories to analyse the learning process for Neural Network algorithms in a high-dimensional framework. We consider a Mean Field Neural Network in the context of MFC theory referring to the mean field formulation of OT theory that may allow the development of efficient algorithms in a high-dimensional framework while providing a powerful tool in the context of explainable Artificial Intelligence.
2023
neural network, machine learning, optimal transport, mean field control, mean field optimal transport
File in questo prodotto:
File Dimensione Formato  
symmetry-15-01724.pdf

accesso aperto

Licenza: Dominio pubblico
Dimensione 295.92 kB
Formato Adobe PDF
295.92 kB Adobe PDF Visualizza/Apri
symmetry-15-01724-1.pdf

accesso aperto

Licenza: Non specificato
Dimensione 295.92 kB
Formato Adobe PDF
295.92 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1107468
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact