In this paper, how to successfully and efficiently condition a target population of agents towards consensus is discussed. To overcome the curse of dimensionality, the mean field formulation of the consensus control problem is considered. Although such formulation is designed to be independent of the number of agents, it is feasible to solve only for moderate intrinsic dimensions of the agents space. For this reason, the solution is approached by means of a Boltzmann procedure, i.e. quasi-invariant limit of controlled binary interactions as approximation of the mean field PDE. The need for an efficient solver for the binary interaction control problem motivates the use of a supervised learning approach to encode a binary feedback map to be sampled at a very high rate. A gradient augmented feedforward neural network for the Value function of the binary control problem is considered and compared with direct approximation of the feedback law. Copyright (C) 2022 The Authors.
Supervised learning for kinetic consensus control
Albi, G;
2022-01-01
Abstract
In this paper, how to successfully and efficiently condition a target population of agents towards consensus is discussed. To overcome the curse of dimensionality, the mean field formulation of the consensus control problem is considered. Although such formulation is designed to be independent of the number of agents, it is feasible to solve only for moderate intrinsic dimensions of the agents space. For this reason, the solution is approached by means of a Boltzmann procedure, i.e. quasi-invariant limit of controlled binary interactions as approximation of the mean field PDE. The need for an efficient solver for the binary interaction control problem motivates the use of a supervised learning approach to encode a binary feedback map to be sampled at a very high rate. A gradient augmented feedforward neural network for the Value function of the binary control problem is considered and compared with direct approximation of the feedback law. Copyright (C) 2022 The Authors.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.