: The simultaneous interrogation of both lossy mode (LMR) and surface plasmon (SPR) resonances was herein exploited for the first time to devise a sensor in combination with soft molecularly imprinting of nanoparticles (nanoMIPs), specifically entailed of the selectivity towards the protein biomarker human serum transferrin (HTR). Two distinct metal-oxide bilayers, i.e. TiO2-ZrO2 and ZrO2-TiO2, were used in the SPR-LMR sensing platforms. The responses to binding of the target protein HTR of both sensing configurations (TiO2-ZrO2-Au-nanoMIPs, ZrO2-TiO2-Au-nanoMIPs) showed femtomolar HTR detection, LODs of tens of fM and KDapp ~ 30 fM. Selectivity for HTR was demonstrated. The SPR interrogation was more efficient for the ZrO2-TiO2-Au-nanoMIPs configuration (sensitivity at low concentrations, S = 0.108 nm/fM) than for the TiO2-ZrO2-Au-nanoMIPs one (S = 0.061 nm/fM); while LMR was more efficient for TiO2-ZrO2-Au-nanoMIPs (S = 0.396 nm/fM) than for ZrO2-TiO2-Au-nanoMIPs (S = 0.177 nm/fM). The simultaneous resonance monitoring is advantageous for point of care determinations, both in terms of measurement's redundancy, that enables the cross-control of the measure and the optimization of the detection, by exploiting the individual characteristics of each resonance.

Soft molecularly imprinted nanoparticles with simultaneous lossy mode and surface plasmon multi-resonances for femtomolar sensing of serum transferrin protein

Seggio, Mimimorena;Bossi, Alessandra Maria
;
2023-01-01

Abstract

: The simultaneous interrogation of both lossy mode (LMR) and surface plasmon (SPR) resonances was herein exploited for the first time to devise a sensor in combination with soft molecularly imprinting of nanoparticles (nanoMIPs), specifically entailed of the selectivity towards the protein biomarker human serum transferrin (HTR). Two distinct metal-oxide bilayers, i.e. TiO2-ZrO2 and ZrO2-TiO2, were used in the SPR-LMR sensing platforms. The responses to binding of the target protein HTR of both sensing configurations (TiO2-ZrO2-Au-nanoMIPs, ZrO2-TiO2-Au-nanoMIPs) showed femtomolar HTR detection, LODs of tens of fM and KDapp ~ 30 fM. Selectivity for HTR was demonstrated. The SPR interrogation was more efficient for the ZrO2-TiO2-Au-nanoMIPs configuration (sensitivity at low concentrations, S = 0.108 nm/fM) than for the TiO2-ZrO2-Au-nanoMIPs one (S = 0.061 nm/fM); while LMR was more efficient for TiO2-ZrO2-Au-nanoMIPs (S = 0.396 nm/fM) than for ZrO2-TiO2-Au-nanoMIPs (S = 0.177 nm/fM). The simultaneous resonance monitoring is advantageous for point of care determinations, both in terms of measurement's redundancy, that enables the cross-control of the measure and the optimization of the detection, by exploiting the individual characteristics of each resonance.
2023
molecularly imprinted polymers; nanoparticles; surface plasmon resonance; lossy mode resonance; biosensor; sensor; proteins; human transferrin
File in questo prodotto:
File Dimensione Formato  
s41598-023-38262-y.pdf

accesso aperto

Tipologia: Versione dell'editore
Licenza: Dominio pubblico
Dimensione 1.87 MB
Formato Adobe PDF
1.87 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1101976
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact