Moved by the necessity, also related to the ongoing COVID-19 pandemic, of the design of innovative solutions in the context of digital health, and digital medicine, Wireless Body Area Networks (WBANs) are more and more emerging as a central system for the implementation of solutions for well-being and healthcare. In fact, by elaborating the data collected by a WBAN, advanced classification models can accurately extract health-related parameters, thus allowing, as examples, the implementations of applications for fitness tracking, monitoring of vital signs, diagnosis, and analysis of the evolution of diseases, and, in general, monitoring of human activities and behaviours. Unfortunately, commercially available WBANs present some technological and economic drawbacks from the point of view, respectively, of data fusion and labelling, and cost of the adopted devices. To overcome existing issues, in this paper, we present the architecture of a low-cost WBAN, which is built upon accessible off-the-shelf wearable devices and an Android application. Then, we report its technical evaluation concerning resource consumption. Finally, we demonstrate its versatility and accuracy in both medical and well-being application scenarios.
A low-cost wireless body area network for human activity recognition in healthy life and medical applications
	
	
	
		
		
		
		
		
	
	
	
	
	
	
	
	
		
		
		
		
		
			
			
			
		
		
		
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
		
		
		
	
Demrozi, Florenc
;Turetta, Cristian
;Bacchin, Ruggero;Vale', Nicola;Pascucci, Francesco;Cesari, Paola;Smania, Nicola;Tamburin, Stefano;Pravadelli, Graziano
	
		
		
	
			2023-01-01
Abstract
Moved by the necessity, also related to the ongoing COVID-19 pandemic, of the design of innovative solutions in the context of digital health, and digital medicine, Wireless Body Area Networks (WBANs) are more and more emerging as a central system for the implementation of solutions for well-being and healthcare. In fact, by elaborating the data collected by a WBAN, advanced classification models can accurately extract health-related parameters, thus allowing, as examples, the implementations of applications for fitness tracking, monitoring of vital signs, diagnosis, and analysis of the evolution of diseases, and, in general, monitoring of human activities and behaviours. Unfortunately, commercially available WBANs present some technological and economic drawbacks from the point of view, respectively, of data fusion and labelling, and cost of the adopted devices. To overcome existing issues, in this paper, we present the architecture of a low-cost WBAN, which is built upon accessible off-the-shelf wearable devices and an Android application. Then, we report its technical evaluation concerning resource consumption. Finally, we demonstrate its versatility and accuracy in both medical and well-being application scenarios.| File | Dimensione | Formato | |
|---|---|---|---|
| 
									
										
										
										
										
											
												
												
												    
												
											
										
									
									
										
										
											A_Low-Cost_Wireless_Body_Area_Network_for_Human_Activity_Recognition_in_Healthy_Life_and_Medical_Applications.pdf
										
																				
									
										
											 accesso aperto 
											Descrizione: CC BY 4.0 publisher version
										 
									
									
									
										
											Tipologia:
											Versione dell'editore
										 
									
									
									
									
										
											Licenza:
											
											
												Creative commons
												
												
													
													
													
												
												
											
										 
									
									
										Dimensione
										3.19 MB
									 
									
										Formato
										Adobe PDF
									 
										
										
								 | 
								3.19 MB | Adobe PDF | Visualizza/Apri | 
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



