Let X be a topologically stratified space, p be any perversity on X and k be a field. We show that the category of p-perverse sheaves on X, constructible with respect to the stratification and with coefficients in k, is equivalent to the category of finite-dimensional modules over a finite-dimensional algebra if and only if X has finitely many strata and the same holds for the category of local systems on each of these. The main component in the proof is a construction of projective covers for simple perverse sheaves.
When are there enough projective perverse sheaves?
ALESSIO CIPRIANI;
2022-01-01
Abstract
Let X be a topologically stratified space, p be any perversity on X and k be a field. We show that the category of p-perverse sheaves on X, constructible with respect to the stratification and with coefficients in k, is equivalent to the category of finite-dimensional modules over a finite-dimensional algebra if and only if X has finitely many strata and the same holds for the category of local systems on each of these. The main component in the proof is a construction of projective covers for simple perverse sheaves.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
when-are-there-enough-projective-perverse-sheaves.pdf
solo utenti autorizzati
Licenza:
Copyright dell'editore
Dimensione
157.65 kB
Formato
Adobe PDF
|
157.65 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.