Objective: In this review, we aim to collect and discuss available data about the role and composition of tumor microenvironment (TME) in oligometastatic (OMD) and oligoprogressive (OPD) non-small cell lung cancer (NSCLC). Furthermore, we aim to summarize the ongoing clinical trials evaluating as exploratory objective the TME composition, through tissue and/or blood samples, in order to clarify whether TME and its components could explain, at least partially, the oligometastatic/oligoprogressive process and could unravel the existence of predictive and/or prognostic factors for local ablative therapy (LAT).Background: OMD/OPD NSCLC represent a heterogeneous group of diseases. Several data have shown that TME plays an important role in tumor progression and therefore in treatment response. The crucial role of several types of cells and molecules such as immune cells, cytokines, integrins, protease and adhesion molecules, tumor-associated macrophages (TAMs) and mesenchymal stem cells (MSCs) has been widely established. Due to the peculiar activation of specific pathways and expression of adhesion molecules, metastatic cells seem to show a tropism for specific anatomic sites (the so-called "seed and soil" hypothesis). Based on this theory, metastases appear as a biologically driven process rather than a random release of cancer cells. Although the role and the function of TME at the time of progression in patients with NSCLC treated with tyrosine-kinase inhibitors and immune checkpoint inhibitors (ICIs) have been investigated, limited data about the role and the biological meaning of TME are available in the specific OMD/OPD setting.Methods: Through a comprehensive PubMed and ClinicalTrials.gov search, we identified available and ongoing studies exploring the role of TME in oligometastatic/oligoprogressive NSCLC.Conclusions: Deepening the knowledge on TME composition and function in OMD/OPD may provide innovative implications in terms of both prognosis and prediction of outcome in particular from local treatments, paving the way for future investigations of personalized approaches in both advanced and early disease settings.

A narrative review on tumor microenvironment in oligometastatic and oligoprogressive non-small cell lung cancer: a lot remains to be done

Belluomini, Lorenzo;Dodi, Alessandra;Caldart, Alberto;Kadrija, Dzenete;Sposito, Marco;Casali, Miriam;Avancini, Alice;Bria, Emilio;Milella, Michele;Pilotto, Sara
2021-01-01

Abstract

Objective: In this review, we aim to collect and discuss available data about the role and composition of tumor microenvironment (TME) in oligometastatic (OMD) and oligoprogressive (OPD) non-small cell lung cancer (NSCLC). Furthermore, we aim to summarize the ongoing clinical trials evaluating as exploratory objective the TME composition, through tissue and/or blood samples, in order to clarify whether TME and its components could explain, at least partially, the oligometastatic/oligoprogressive process and could unravel the existence of predictive and/or prognostic factors for local ablative therapy (LAT).Background: OMD/OPD NSCLC represent a heterogeneous group of diseases. Several data have shown that TME plays an important role in tumor progression and therefore in treatment response. The crucial role of several types of cells and molecules such as immune cells, cytokines, integrins, protease and adhesion molecules, tumor-associated macrophages (TAMs) and mesenchymal stem cells (MSCs) has been widely established. Due to the peculiar activation of specific pathways and expression of adhesion molecules, metastatic cells seem to show a tropism for specific anatomic sites (the so-called "seed and soil" hypothesis). Based on this theory, metastases appear as a biologically driven process rather than a random release of cancer cells. Although the role and the function of TME at the time of progression in patients with NSCLC treated with tyrosine-kinase inhibitors and immune checkpoint inhibitors (ICIs) have been investigated, limited data about the role and the biological meaning of TME are available in the specific OMD/OPD setting.Methods: Through a comprehensive PubMed and ClinicalTrials.gov search, we identified available and ongoing studies exploring the role of TME in oligometastatic/oligoprogressive NSCLC.Conclusions: Deepening the knowledge on TME composition and function in OMD/OPD may provide innovative implications in terms of both prognosis and prediction of outcome in particular from local treatments, paving the way for future investigations of personalized approaches in both advanced and early disease settings.
2021
Tumor microenvironment (TME)
local ablative therapy (LAT)
non-small cell lung cancer (NSCLC)
oligometastases
oligoprogression
File in questo prodotto:
File Dimensione Formato  
51600-PB4-6902-R2.pdf

solo utenti autorizzati

Tipologia: Documento in Post-print
Licenza: Non specificato
Dimensione 1.22 MB
Formato Adobe PDF
1.22 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1094608
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact