Deficit of human ornithine aminotransferase (hOAT), a mitochondrial tetrameric pyridoxal-5'-phosphate (PLP) enzyme, leads to gyrate atrophy of the choroid and retina (GA). Although 70 pathogenic mutations have been identified, only few enzymatic phenotypes are known. Here, we report biochemical and bioinformatic analyses of the G51D, G121D, R154L, Y158S, T181M, and P199Q pathogenic variants involving residues located at the monomer-monomer interface. All mutations cause a shift toward a dimeric structure, and changes in tertiary structure, thermal stability, and PLP microenvironment. The impact on these features is less pronounced for the mutations of Gly51 and Gly121 mapping to the N-terminal segment of the enzyme than those of Arg154, Tyr158, Thr181, and Pro199 belonging to the large domain. These data, together with the predicted ΔΔG values of monomer-monomer binding for the variants, suggest that the proper monomer-monomer interactions seem to be correlated with the thermal stability, the PLP binding site and the tetrameric structure of hOAT. The different impact of these mutations on the catalytic activity was also reported and discussed on the basis of the computational information. Together, these results allow the identification of the molecular defects of these variants, thus extending the knowledge of enzymatic phenotypes of GA patients.

Biochemical and bioinformatic studies of mutations of residues at the monomer-monomer interface of human ornithine aminotransferase leading to gyrate atrophy of choroid and retina

Floriani, Fulvio;Borri Voltattorni, Carla;Montioli, Riccardo
2023-01-01

Abstract

Deficit of human ornithine aminotransferase (hOAT), a mitochondrial tetrameric pyridoxal-5'-phosphate (PLP) enzyme, leads to gyrate atrophy of the choroid and retina (GA). Although 70 pathogenic mutations have been identified, only few enzymatic phenotypes are known. Here, we report biochemical and bioinformatic analyses of the G51D, G121D, R154L, Y158S, T181M, and P199Q pathogenic variants involving residues located at the monomer-monomer interface. All mutations cause a shift toward a dimeric structure, and changes in tertiary structure, thermal stability, and PLP microenvironment. The impact on these features is less pronounced for the mutations of Gly51 and Gly121 mapping to the N-terminal segment of the enzyme than those of Arg154, Tyr158, Thr181, and Pro199 belonging to the large domain. These data, together with the predicted ΔΔG values of monomer-monomer binding for the variants, suggest that the proper monomer-monomer interactions seem to be correlated with the thermal stability, the PLP binding site and the tetrameric structure of hOAT. The different impact of these mutations on the catalytic activity was also reported and discussed on the basis of the computational information. Together, these results allow the identification of the molecular defects of these variants, thus extending the knowledge of enzymatic phenotypes of GA patients.
2023
gyrate atrophy of choroid and retina
interface mutations
ornithine aminotransferase
pathogenic variants
pyridoxal 5′-phosphate
File in questo prodotto:
File Dimensione Formato  
ijms-24-03369.pdf

accesso aperto

Descrizione: CC BY 4.0 publisher version
Tipologia: Versione dell'editore
Licenza: Creative commons
Dimensione 20.82 MB
Formato Adobe PDF
20.82 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1088131
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact