Molecularly imprinted nanoparticles (nanoMIPs) are biomimetic polymeric nanomaterials, typically prepared from acrylamide and derivatives, that are formed by a template-assisted synthesis. NanoMIPs display high afnity, selectivity, and specifcity for the targeted molecule, on the par of natural receptors and antibodies. Recently, we introduced a paradigmatic change by forming nanoMIPs starting from biomaterials, under the name of bioMIPs, as a strategy to promptly translate them into the clinical settings. Silk fbroin, that is a biocompatible and non-immunogenic natural material, was used as a building block for the synthesis of bioMIPs tailored to recognize the protein human serum albumin. BioMIPs confrmed high selectivity and specifcity for the targeted protein, together with cytocompatibility. The present work expands the actual knowledge on bioMIPs, studying a route to post-synthetically entail fuorescent tags, with the aim to localize these molecular nanotraps in cells and tissues. Moreover, the enzymatic degradation of bioMIPs was investigated, to support the role of bioMIPs as greener and biocompatible alternatives to non-natural biomimetics.

Silk fibroin molecularly imprinted nanoparticles as biocompatible molecular nanotraps: Molecular recognition ties the knot with biomaterials. The bioMIP’s labeling and degradation

Alessandra Maria Bossi
2023-01-01

Abstract

Molecularly imprinted nanoparticles (nanoMIPs) are biomimetic polymeric nanomaterials, typically prepared from acrylamide and derivatives, that are formed by a template-assisted synthesis. NanoMIPs display high afnity, selectivity, and specifcity for the targeted molecule, on the par of natural receptors and antibodies. Recently, we introduced a paradigmatic change by forming nanoMIPs starting from biomaterials, under the name of bioMIPs, as a strategy to promptly translate them into the clinical settings. Silk fbroin, that is a biocompatible and non-immunogenic natural material, was used as a building block for the synthesis of bioMIPs tailored to recognize the protein human serum albumin. BioMIPs confrmed high selectivity and specifcity for the targeted protein, together with cytocompatibility. The present work expands the actual knowledge on bioMIPs, studying a route to post-synthetically entail fuorescent tags, with the aim to localize these molecular nanotraps in cells and tissues. Moreover, the enzymatic degradation of bioMIPs was investigated, to support the role of bioMIPs as greener and biocompatible alternatives to non-natural biomimetics.
2023
Acrylamides; Clinical settings; High affinity; High selectivity; High specificity; Labelings; Molecularly imprinted; Natural receptors; Silk fibroin; Template-assisted synthesis
File in questo prodotto:
File Dimensione Formato  
s43580-023-00507-3.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Dominio pubblico
Dimensione 3.25 MB
Formato Adobe PDF
3.25 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1087687
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact