Molecularly imprinted nanoparticles (nanoMIPs) are biomimetic polymeric nanomaterials, typically prepared from acrylamide and derivatives, that are formed by a template-assisted synthesis. NanoMIPs display high afnity, selectivity, and specifcity for the targeted molecule, on the par of natural receptors and antibodies. Recently, we introduced a paradigmatic change by forming nanoMIPs starting from biomaterials, under the name of bioMIPs, as a strategy to promptly translate them into the clinical settings. Silk fbroin, that is a biocompatible and non-immunogenic natural material, was used as a building block for the synthesis of bioMIPs tailored to recognize the protein human serum albumin. BioMIPs confrmed high selectivity and specifcity for the targeted protein, together with cytocompatibility. The present work expands the actual knowledge on bioMIPs, studying a route to post-synthetically entail fuorescent tags, with the aim to localize these molecular nanotraps in cells and tissues. Moreover, the enzymatic degradation of bioMIPs was investigated, to support the role of bioMIPs as greener and biocompatible alternatives to non-natural biomimetics.
Silk fibroin molecularly imprinted nanoparticles as biocompatible molecular nanotraps: Molecular recognition ties the knot with biomaterials. The bioMIP’s labeling and degradation
Alessandra Maria Bossi
2023-01-01
Abstract
Molecularly imprinted nanoparticles (nanoMIPs) are biomimetic polymeric nanomaterials, typically prepared from acrylamide and derivatives, that are formed by a template-assisted synthesis. NanoMIPs display high afnity, selectivity, and specifcity for the targeted molecule, on the par of natural receptors and antibodies. Recently, we introduced a paradigmatic change by forming nanoMIPs starting from biomaterials, under the name of bioMIPs, as a strategy to promptly translate them into the clinical settings. Silk fbroin, that is a biocompatible and non-immunogenic natural material, was used as a building block for the synthesis of bioMIPs tailored to recognize the protein human serum albumin. BioMIPs confrmed high selectivity and specifcity for the targeted protein, together with cytocompatibility. The present work expands the actual knowledge on bioMIPs, studying a route to post-synthetically entail fuorescent tags, with the aim to localize these molecular nanotraps in cells and tissues. Moreover, the enzymatic degradation of bioMIPs was investigated, to support the role of bioMIPs as greener and biocompatible alternatives to non-natural biomimetics.File | Dimensione | Formato | |
---|---|---|---|
s43580-023-00507-3.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Dominio pubblico
Dimensione
3.25 MB
Formato
Adobe PDF
|
3.25 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.