Skiing is a popular winter activity spanning various subdisciplines. Key hardware are ski boots, bindings, and skis, which are designed to withstand loads generated during skiing. Obtaining service forces and moments has always been challenging to researchers in the past. The goal of the present study is to develop and test a lightweight and compact measurement system to obtain the Ground Reaction Forces and the kinematics for ski touring and alpine ski. To do so, we adapted two six-axis load cells to fit into ski touring and alpine skis adding 20 mm height and 500 g weight to the original ski. To measure kinematics, we created custom angular sensors from rotary potentiometers. The system was tested indoors using a force platform and motion capture system before a first set of field tests in which the sensors were used to measure ski touring and alpine skis kinetics and kinematics. Validation trials showed maximum errors of 10% for kinetics and 5% for kinematics. Field tests showed data in agreement with previous findings on the topic. The results of this study show the possibility of using our system to study biomechanics and equipment performances for ski touring, alpine skiing, and possibly other disciplines.

An innovative compact system to measure skiing ground reaction forces and flexural angles of alpine and touring ski boots

Bortolan, Lorenzo;
2023-01-01

Abstract

Skiing is a popular winter activity spanning various subdisciplines. Key hardware are ski boots, bindings, and skis, which are designed to withstand loads generated during skiing. Obtaining service forces and moments has always been challenging to researchers in the past. The goal of the present study is to develop and test a lightweight and compact measurement system to obtain the Ground Reaction Forces and the kinematics for ski touring and alpine ski. To do so, we adapted two six-axis load cells to fit into ski touring and alpine skis adding 20 mm height and 500 g weight to the original ski. To measure kinematics, we created custom angular sensors from rotary potentiometers. The system was tested indoors using a force platform and motion capture system before a first set of field tests in which the sensors were used to measure ski touring and alpine skis kinetics and kinematics. Validation trials showed maximum errors of 10% for kinetics and 5% for kinematics. Field tests showed data in agreement with previous findings on the topic. The results of this study show the possibility of using our system to study biomechanics and equipment performances for ski touring, alpine skiing, and possibly other disciplines.
2023
alpine ski
ground reaction forces
ski boot
ski touring
snow sports
File in questo prodotto:
File Dimensione Formato  
sensors-23-00836.pdf

accesso aperto

Descrizione: CC BY 4.0 publisher version
Tipologia: Versione dell'editore
Licenza: Creative commons
Dimensione 5.07 MB
Formato Adobe PDF
5.07 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1086055
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact